0000000000560525
AUTHOR
Jihad H’roura
3D objects descriptors methods: Overview and trends
International audience; Object recognition or object's category recognition under varying conditions is one of the most astonishing capabilities of human visual system. The scientists in computer vision have been trying for decades to reproduce this ability by implementing algorithms and providing computers with appropriate tools. Hence, several intelligent systems have been proposed. To act in this field, numerous approaches have been proposed. In this paper we present an overview of the current trend in 3D objects recognition and describe some representative state of the art methods, highlighting their limits and complexity.
Salient Spin Images: A Descriptor for 3D Object Recognition
In the last decades a wide range of algorithms have been devoted to recognize 3D free-from objects under real conditions such as occlusions, clutters, rotation, scale and translation. Spin image is one of these algorithms known to be robust to rotation, translation, occlusions up to 70% and clutters up to 60%, but still suffer from scaling, resolution changes and it is time consuming. In this paper we present a novel approach based on spin images, called salient spin images (SSI). This method enhances spin images algorithm based on its limits. Particularly, it decreases significantly the complexity of the algorithm using DoG detector, it shows a higher performance due to the relevant locali…