0000000000560601

AUTHOR

Federica Inderst

Demo

We present an innovative smartphone-centric tracking system for indoor and outdoor environments, based on the joint utilization of dead-reckoning and computer vision (CV) techniques. The system is explicitly designed for visually impaired people (although it could be easily generalized to other users) and it is built under the assumption that special reference signals, such as painted lines, colored tapes or tactile pavings are deployed in the environment for guiding visually impaired users along pre-defined paths. Thanks to highly optimized software, we are able to execute the CV and sensor-fusion algorithms in run-time on low power hardware such as a normal smartphone, precisely tracking …

research product

Sensor Fusion Localization and Navigation for Visually Impaired People

In this paper, we present an innovative cyber physical system for indoor and outdoor localization and navigation, based on the joint utilization of dead-reckoning and computer vision techniques on a smartphone-centric tracking system. The system is explicitly designed for visually impaired people, but it can be easily generalized to other users, and it is built under the assumption that special reference signals, such as colored tapes, painted lines, or tactile paving, are deployed in the environment for guiding visually impaired users along pre-defined paths. Differently from previous works on localization, which are focused only on the utilization of inertial sensors integrated into the s…

research product

Supporting Autonomous Navigation of Visually Impaired People for Experiencing Cultural Heritage

In this chapter, we present a system for indoor and outdoor localization and navigation to allow the low vision users in experiencing cultural heritage in autonomy. The system is based on the joint utilization of dead-reckoning and computer vision techniques on a smartphone-centric tracking system. The system is explicitly designed for visually impaired people, but it can be easily generalized to other users, and it is built under the assumption that special reference signals, such as colored tapes, painted lines, or tactile paving, are deployed in the environment for guiding visually impaired users along pre-defined paths. Differently from previous works on localization, which are focused …

research product