0000000000560639

AUTHOR

Amitai Regev

showing 4 related works from this author

On the Codimension Growth of Finite-Dimensional Lie Algebras

1999

Abstract We study the exponential growth of the codimensions cn(L) of a finite-dimensional Lie algebra L over a field of characteristic zero. We show that if the solvable radical of L is nilpotent then lim n → ∞ c n ( L ) exists and is an integer.

Discrete mathematicsPure mathematicsAdjoint representation of a Lie algebraNilpotentAlgebra and Number TheorySimple Lie groupUniversal enveloping algebraKilling formAffine Lie algebraMathematicsLie conformal algebraGraded Lie algebraJournal of Algebra
researchProduct

Simple and semisimple Lie algebras and codimension growth

1999

Discrete mathematicsAdjoint representation of a Lie algebraPure mathematicsRepresentation of a Lie groupApplied MathematicsGeneral MathematicsSimple Lie groupFundamental representationReal formKilling formKac–Moody algebraAffine Lie algebraMathematicsTransactions of the American Mathematical Society
researchProduct

Standard polynomials are characterized by their degree and exponent

2011

Abstract By the Giambruno–Zaicev theorem (Giambruno and Zaicev, 1999) [5] , the exponent exp ( A ) of a p.i. algebra A exists, and is always an integer. In Berele and Regev (2001) [2] it was shown that the exponent exp ( St n ) of the standard polynomial St n of degree n is not smaller than the exponent of any polynomial of degree n. Here it is proved that exp ( St n ) is strictly larger than the exponent of any other polynomial of degree n which is not a multiple of St n .

Discrete mathematicsPolynomialAlgebra and Number TheoryQuantitative Biology::Neurons and CognitionDegree (graph theory)ExponentPolynomial identityCodimensionsCombinatoricsIntegerExponentDegree of a polynomialAlgebra over a fieldPolynomial identity Exponent CodimensionsMathematics
researchProduct

Involution codimensions and trace codimensions of matrices are asymptotically equal

1996

We calculate the asymptotic growth oft n (M p (F),*) andc n (M p (F),*), the trace and ordinary *-codimensions ofp×p matrices with involution. To do this we first calculate the asymptotic growth oft n and then show thatc n ⋍t n .

CombinatoricsInvolution (mathematics)Wreath productGeneral MathematicsMathematicsIsrael Journal of Mathematics
researchProduct