0000000000563136

AUTHOR

Wassim Trabelsi

Durability of a 3D woven composite assisted by finite element multi-scale modelling

International audience; The textile composite studied is a 3D woven composite. A unit cell is defined by using microscopic examinations of the microstructure. A multiscale approach assisted by the finite element method is performed in order to estimate the effective properties of the composite and then to access to local stress field. This approach allows the determination of the kind of load to which warp yarns are subjected. Moreover, detailed analysis of damaged model using different configurations of broken yarns are treated. The evolution of the stress concentration coefficient highlight the load transfers due to consecutive yarn breaks.

research product

Bending effect on the risk for delamination at the reinforcement/matrix interface of 3D woven fabric composite using a shell-like RVE

This paper presents a computational homogenisation-based technique for flexural effects in textile reinforced composite planar shells. An homogenisation procedure is used for the in-plane and the out-of-plane behaviour of three-dimensional woven composite shells, taking the in-plane periodicity of the material into account while relaxing any periodicity tying in the thickness direction. Several types of damage (matrix or reinforcement cracking, delamination, …) can appear in a composite material. In this paper, material non-linear computations are used to assess the importance of bending on the risk for delamination at the reinforcement/matrix interface. The normal and tangential stresses a…

research product