0000000000563975
AUTHOR
Juliette Hell
Sustained oscillations in the MAP kinase cascade.
Abstract The MAP kinase cascade is a network of enzymatic reactions arranged in layers. In each layer occurs a multiple futile cycle of phosphorylations. The fully phosphorylated substrate then serves as an enzyme for the layer below. This paper focuses on the existence of parameters for which Hopf bifurcations occur and generate periodic orbits. Furthermore it is explained how geometric singular perturbation theory allows to generalize results from simple models to more complex ones.
Dynamical Features of the MAP Kinase Cascade
The MAP kinase cascade is an important signal transduction system in molecular biology for which a lot of mathematical modelling has been done. This paper surveys what has been proved mathematically about the qualitative properties of solutions of the ordinary differential equations arising as models for this biological system. It focuses, in particular, on the issues of multistability and the existence of sustained oscillations. It also gives a concise introduction to the mathematical techniques used in this context, bifurcation theory and geometric singular perturbation theory, as they relate to these specific examples. In addition further directions are presented in which the application…
A proof of bistability for the dual futile cycle
Abstract The multiple futile cycle is an important building block in networks of chemical reactions arising in molecular biology. A typical process which it describes is the addition of n phosphate groups to a protein. It can be modelled by a system of ordinary differential equations depending on parameters. The special case n = 2 is called the dual futile cycle. The main result of this paper is a proof that there are parameter values for which the system of ODE describing the dual futile cycle has two distinct stable stationary solutions. The proof is based on bifurcation theory and geometric singular perturbation theory. An important entity built of three coupled multiple futile cycles is…