0000000000564285

AUTHOR

G. Lapalme

showing 1 related works from this author

The impact of feature extraction on the performance of a classifier : kNN, Naïve Bayes and C4.5

2005

"The curse of dimensionality" is pertinent to many learning algorithms, and it denotes the drastic raise of computational complexity and the classification error in high dimensions. In this paper, different feature extraction techniques as means of (1) dimensionality reduction, and (2) constructive induction are analyzed with respect to the performance of a classifier. Three commonly used classifiers are taken for the analysis: kNN, Naïve Bayes and C4.5 decision tree. One of the main goals of this paper is to show the importance of the use of class information in feature extraction for classification and (in)appropriateness of random projection or conventional PCA to feature extraction for …

Covariance matrixComputer sciencebusiness.industryRandom projectionDimensionality reductionFeature extractionLinear classifierPattern recognitionMachine learningcomputer.software_genreNaive Bayes classifierComputingMethodologies_PATTERNRECOGNITIONPrincipal component analysisArtificial intelligencebusinesscomputerCurse of dimensionalityAdvances in artificial intelligence : 18th conference of the canadian society for computational Studies of Intelligence, Canadian AI 2005, Victoria, Canada, May 9-11, 2005 : proceedings
researchProduct