0000000000567986

AUTHOR

Xiaolian Qiang

Self-Assembly of block copolymers into internally ordered microparticles

Abstract Block copolymer (BCP) self-assembly is one of the most versatile concepts for the bottom-up design of functional nanostructures in materials science, nanomedicine and nanotechnology. While BCPs have been extensively studied regarding their microphase separation in bulk and the self-assembly in solution, only recently BCPs were investigated for their ability to form internally ordered microparticles. In this review, we discuss two emerging concepts: (i) the microphase separation of BCPs in the spherical confinement of evaporating emulsion droplets and (ii) the self-assembly of highly asymmetric BCPs under concentrated conditions. While the first concept yields solid and compact mult…

research product

Controlling Janus Nanodisc Topology through ABC Triblock Terpolymer/Homopolymer Blending in 3D Confinement

Janus particles have drawn considerable interest as colloidal surfactants, microswimmers, and building blocks for colloidal lattices. So far, research primarily focused on spherical Janus particles for which a number of fabrication methods are well established. Janus particles with geometric anisotropy offer shape-dependent properties in addition to surface anisotropy, but their synthesis is more challenging. Here, we report a variety of polymeric Janus nanoparticles synthesized from ABC triblock terpolymer microphases in microemulsion droplets. Evaporation-induced assembly of the ABC triblock terpolymers led to prolate microparticles with A/C lamellae stacked along the particle’s major axi…

research product