0000000000582439

AUTHOR

Eusebio Lavara-culebras

Drosophila DJ-1 mutants are sensitive to oxidative stress and show reduced lifespan and motor deficits.

Parkinson's disease (PD) is a progressive movement disorder caused by the selective and massive loss of dopaminergic neurons (DA) in the substantia nigra pars compacta (SNc). DJ-1 loss-of-function mutations are involved in inherited early-onset PD forms and result in dysfunction of the oxidative stress response. In mice models, DJ-1 loss provokes sensitivity to oxidative insults but does not produce neurodegeneration. Similar results have been found when analyzing Drosophila mutants for the DJ-1 orthologous genes, DJ-1alpha and DJ-1beta. Here, we report the analysis of two new mutations for the Drosophila DJ-1 genes. Both ubiquitous induction of DJ-1alpha knockdown by RNAi and loss of funct…

research product

Effects of pharmacological agents on the lifespan phenotype of Drosophila DJ-1beta mutants.

Mutations in the DJ-1 gene cause autosomal recessive, early-onset Parkinsonism. The DJ-1 protein exerts a protective role against oxidative stress damage, working as a cellular oxidative stress sensor, and it seems to regulate gene expression at different levels. In Drosophila, two DJ-1 orthologs have been identified: DJ-1β and DJ-1β. Several studies have shown that loss of DJ-1β function causes Parkinson's disease (PD)-like phenotypes in flies such as age-dependent locomotor defects, reduced lifespan, and enhanced sensitivity to toxins that induce oxidative stress, like the herbicide paraquat. However, no dopaminergic neurodegeneration is observed. These results suggested that both locomot…

research product