0000000000582460

AUTHOR

José M. Badía

0000-0002-5927-0449

An Efficient Implementation of Parallel Parametric HRTF Models for Binaural Sound Synthesis in Mobile Multimedia

The extended use of mobile multimedia devices in applications like gaming, 3D video and audio reproduction, immersive teleconferencing, or virtual and augmented reality, is demanding efficient algorithms and methodologies. All these applications require real-time spatial audio engines with the capability of dealing with intensive signal processing operations while facing a number of constraints related to computational cost, latency and energy consumption. Most mobile multimedia devices include a Graphics Processing Unit (GPU) that is primarily used to accelerate video processing tasks, providing high computational capabilities due to its inherent parallel architecture. This paper describes…

research product

On the Use of a GPU-Accelerated Mobile Device Processor for Sound Source Localization

Abstract The growing interest to incorporate new features into mobile devices has increased the number of signal processing applications running over processors designed for mobile computing. A challenging signal processing field is acoustic source localization, which is attractive for applications such as automatic camera steering systems, human-machine interfaces, video gaming or audio surveillance. In this context, the emergence of systems-on-chip (SoC) that contain a small graphics accelerator (or GPU), contributes a notable increment of the computational capacity while partially retaining the appealing low-power consumption of embedded systems. This is the case, for example, of the Sam…

research product

Practical considerations for acoustic source localization in the IoT era: Platforms, energy efficiency, and performance

The rapid development of the Internet of Things (IoT) has posed important changes in the way emerging acoustic signal processing applications are conceived. While traditional acoustic processing applications have been developed taking into account high-throughput computing platforms equipped with expensive multichannel audio interfaces, the IoT paradigm is demanding the use of more flexible and energy-efficient systems. In this context, algorithms for source localization and ranging in wireless acoustic sensor networks can be considered an enabling technology for many IoT-based environments, including security, industrial, and health-care applications. This paper is aimed at evaluating impo…

research product

Design and Implementation of Acoustic Source Localization on a Low-Cost IoT Edge Platform

The implementation of algorithms for acoustic source localization on edge platforms for the Internet of Things (IoT) is gaining momentum. Applications based on acoustic monitoring can greatly benefit from efficient implementations of such algorithms, enabling novel services for smart homes and buildings or ambient-assisted living. In this context, this brief proposes extreme low-cost sound source localization system composed of two microphones and the low power microcontroller module ESP32. A Direction-Of-Arrival (DOA) algorithm has been implemented taking into account the specific features of this board, showing excellent performance despite the memory constraints imposed by the platform. …

research product