6533b82ffe1ef96bd1295a08
RESEARCH PRODUCT
On the Use of a GPU-Accelerated Mobile Device Processor for Sound Source Localization
Enrique S. Quintana-ortíMaximo CobosJose A. BellochFrancisco D. IgualJosé M. Badíasubject
020203 distributed computingSignal processingbusiness.industryComputer scienceReal-time computingMobile computing020206 networking & telecommunicationsContext (language use)02 engineering and technologyAcoustic source localizationcomputer.software_genreField (computer science)Power (physics)0202 electrical engineering electronic engineering information engineeringGeneral Earth and Planetary SciencesbusinessAudio signal processingMobile devicecomputerComputer hardwareGeneral Environmental Sciencedescription
Abstract The growing interest to incorporate new features into mobile devices has increased the number of signal processing applications running over processors designed for mobile computing. A challenging signal processing field is acoustic source localization, which is attractive for applications such as automatic camera steering systems, human-machine interfaces, video gaming or audio surveillance. In this context, the emergence of systems-on-chip (SoC) that contain a small graphics accelerator (or GPU), contributes a notable increment of the computational capacity while partially retaining the appealing low-power consumption of embedded systems. This is the case, for example, of the Samsung Exynos 5422 SoC that includes a Mali-T628 MP6 GPU. This work evaluates an OpenCL-based implementation of a method for sound source localization, namely, the Steered-Response Power with Phase Transform (SRP-PHAT) algorithm, on GPUs of this type. The results show that the proposed implementation, given the audio samples, is able to perform audio localization in real time with high-resolution spatial grids using up to 12 microphones.
year | journal | country | edition | language |
---|---|---|---|---|
2017-01-01 | Procedia Computer Science |