0000000000582498

AUTHOR

Joseph Assaker

showing 1 related works from this author

Efficient anomaly detection on sampled data streams with contaminated phase I data

2020

International audience; Control chart algorithms aim to monitor a process over time. This process consists of two phases. Phase I, also called the learning phase, estimates the normal process parameters, then in Phase II, anomalies are detected. However, the learning phase itself can contain contaminated data such as outliers. If left undetected, they can jeopardize the accuracy of the whole chart by affecting the computed parameters, which leads to faulty classifications and defective data analysis results. This problem becomes more severe when the analysis is done on a sample of the data rather than the whole data. To avoid such a situation, Phase I quality must be guaranteed. The purpose…

Computer scienceSample (material)0211 other engineering and technologies02 engineering and technology[INFO.INFO-SE]Computer Science [cs]/Software Engineering [cs.SE]01 natural sciences[INFO.INFO-IU]Computer Science [cs]/Ubiquitous Computing010104 statistics & probabilitysymbols.namesake[INFO.INFO-CR]Computer Science [cs]/Cryptography and Security [cs.CR]ChartControl chartEWMA chart0101 mathematics021103 operations researchData stream miningbusiness.industryPattern recognition[INFO.INFO-MO]Computer Science [cs]/Modeling and Simulation[INFO.INFO-MA]Computer Science [cs]/Multiagent Systems [cs.MA]OutliersymbolsAnomaly detection[INFO.INFO-ET]Computer Science [cs]/Emerging Technologies [cs.ET]Artificial intelligence[INFO.INFO-DC]Computer Science [cs]/Distributed Parallel and Cluster Computing [cs.DC]businessGibbs sampling
researchProduct