0000000000582981
AUTHOR
Lisa Flammini
Synthesis and Characterization of New Bivalent Agents as Melatonin- and Histamine H3-Ligands
Melatonin is an endogenous molecule involved in many pathophysiological processes. In addition to the control of circadian rhythms, its antioxidant and neuroprotective properties have been widely described. Thus far, different bivalent compounds composed by a melatonin molecule linked to another neuroprotective agent were synthesized and tested for their ability to block neurodegenerative processes in vitro and in vivo. To identify a novel class of potential neuroprotective compounds, we prepared a series of bivalent ligands, in which a prototypic melatonergic ligand is connected to an imidazole-based H3 receptor antagonist through a flexible linker. Four imidazolyl-alkyloxy-anilinoethylami…
Novel Analgesic Agents Obtained by Molecular Hybridization of Orthosteric and Allosteric Ligands
AbstractDespite the high incidence of acute and chronic pain in the general population, the efficacy of currently available medications is unsatisfactory. Insufficient management of pain has a profound impact on the quality of life and can have serious physical, psychological, social, and economic consequences. This unmet need reflects a failure to develop novel classes of analgesic drugs with superior clinical properties and lower risk of abuse. Nevertheless, recent advances in our understanding of the neurobiology of pain are offering new opportunities for developing different therapeutic approaches. Among those, the activation of M2 muscarinic acetylcholine receptors, which play a key ro…
Amino Acid Derivatives as Palmitoylethanolamide Prodrugs: Synthesis, In Vitro Metabolism and In Vivo Plasma Profile in Rats
Palmitoylethanolamide (PEA) has antinflammatory and antinociceptive properties widely exploited in veterinary and human medicine, despite its poor pharmacokinetics. Looking for prodrugs that could progressively release PEA to maintain effective plasma concentrations, we prepared carbonates, esters and carbamates at the hydroxyl group of PEA. Chemical stability (pH 7.4) and stability in rat plasma and liver homogenate were evaluated by in vitro assays. Carbonates and carbamates resulted too labile and too resistant in plasma, respectively. Ester derivatives, prepared by conjugating PEA with various amino acids, allowed to modulate the kinetics of PEA release in plasma and stability in liver …