0000000000583045
AUTHOR
Sanghoon Kim
Efficient conversion of orbital Hall current to spin current for spin-orbit torque switching
Spin Hall effect, an electric generation of spin current, allows for efficient control of magnetization. Recent theory revealed that orbital Hall effect creates orbital current, which can be much larger than spin Hall-induced spin current. However, orbital current cannot directly exert a torque on a ferromagnet, requiring a conversion process from orbital current to spin current. Here, we report two effective methods of the conversion through spin-orbit coupling engineering, which allows us to unambiguously demonstrate orbital-current-induced spin torque, or orbital Hall torque. We find that orbital Hall torque is greatly enhanced by introducing either a rare-earth ferromagnet Gd or a Pt in…
Enhanced perpendicular magnetocrystalline anisotropy energy in an artificial magnetic material with bulk spin-momentum coupling
We systematically investigate the perpendicular magnetocrystalline anisotropy (MCA) in $\mathrm{Co}\ensuremath{-}\mathrm{Pt}/\mathrm{Pd}$-based multilayers. Our magnetic measurement data show that the asymmetric Co/Pd/Pt multilayer has a significantly larger perpendicular magnetic anisotropy (PMA) energy compared to the symmetric Co/Pt and Co/Pd multilayer samples. We further support this experiment by first-principles calculations on ${\mathrm{CoPt}}_{2}, {\mathrm{CoPd}}_{2}$, and CoPtPd, which are composite bulk materials that consist of three atomic layers in a unit cell, Pt/Co/Pt, Pd/Co/Pd, and Pt/Co/Pd, respectively. By estimating the contribution of bulk spin-momentum coupling to the …