0000000000583109

AUTHOR

Dariusz Biały

0000-0002-5191-4334

showing 2 related works from this author

Graphene coating obtained in a cold-wall CVD process on the Co-Cr Alloy (L-605) for medical applications

2021

Graphene coating on the cobalt-chromium alloy was optimized and successfully carried out by a cold-wall chemical vapor deposition (CW-CVD) method. A uniform layer of graphene for a large area of the Co-Cr alloy (discs of 10 mm diameter) was confirmed by Raman mapping coated area and analyzing specific G and 2D bands

ErythrocytesMicroscopeScanning electron microscope02 engineering and technologyChemical vapor deposition01 natural scienceslaw.inventionlcsh:ChemistryMiceCoated Materials BiocompatibleCoatinglawMaterials TestingComposite materiallcsh:QH301-705.5SpectroscopySettore CHIM/02 - Chimica Fisicagraphene coating ; biocompatibility ; cobalt chromium alloy ; cold wall chemical vapor deposition methodGeneral Medicine021001 nanoscience & nanotechnologyMicrostructureBlood Coagulation FactorsComputer Science ApplicationsGraphitePartial Thromboplastin TimeBiocompatibility0210 nano-technologyLayer (electronics)Blood PlateletsMaterials scienceCell SurvivalSurface PropertiesPrimary Cell Cultureengineering.material010402 general chemistryCobalt-chromium alloyGraphene coatingCold-wall chemical vapor deposition methodArticleCatalysisInorganic ChemistryAnimalsHumansPhysical and Theoretical ChemistryMolecular BiologyGrapheneOrganic Chemistrytechnology industry and agricultureNanoindentationPlatelet Activation0104 chemical scienceslcsh:Biology (General)lcsh:QD1-999NIH 3T3 CellsengineeringChromium AlloysVolatilization
researchProduct

Graphene Oxide Carboxymethylcellulose Nanocomposite for Dressing Materials.

2020

Sore, infected wounds are a major clinical issue, and there is thus an urgent need for novel biomaterials as multifunctional constituents for dressings. A set of biocomposites was prepared by solvent casting using different concentrations of carboxymethylcellulose (CMC) and exfoliated graphene oxide (Exf-GO) as a filler. Exf-GO was first obtained by the strong oxidation and exfoliation of graphite. The structural, morphological and mechanical properties of the composites (CMCx/Exf-GO) were evaluated, and the obtained composites were homogenous, transparent and brownish in color. The results confirmed that Exf-GO may be homogeneously dispersed in CMC. It was found that the composite has an i…

Materials scienceComposite numberOxide02 engineering and technology010402 general chemistry01 natural scienceslcsh:TechnologyArticlelaw.inventionmedical deviceschemistry.chemical_compoundbiocompatibilitylawGeneral Materials ScienceGraphitelcsh:Microscopygraphene oxide nanocompositeSettore CHIM/02 - Chimica Fisicalcsh:QC120-168.85carboxymethyl celluloseNanocompositelcsh:QH201-278.5Graphenelcsh:T021001 nanoscience & nanotechnologyCastingExfoliation joint0104 chemical sciencesSolventSettore ING-IND/22 - Scienza E Tecnologia Dei MaterialichemistryChemical engineeringlcsh:TA1-2040lcsh:Descriptive and experimental mechanicslcsh:Electrical engineering. Electronics. Nuclear engineering0210 nano-technologylcsh:Engineering (General). Civil engineering (General)lcsh:TK1-9971Materials (Basel, Switzerland)
researchProduct