0000000000583193

AUTHOR

Wei Xue

showing 9 related works from this author

Impeded Dark Matter

2016

We consider dark matter models in which the mass splitting between the dark matter particles and their annihilation products is tiny. Compared to the previously proposed Forbidden Dark Matter scenario, the mass splittings we consider are much smaller, and are allowed to be either positive or negative. To emphasize this modification, we dub our scenario "Impeded Dark Matter". We demonstrate that Impeded Dark Matter can be easily realized without requiring tuning of model parameters. For negative mass splitting, we demonstrate that the annihilation cross-section for Impeded Dark Matter depends linearly on the dark matter velocity or may even be kinematically forbidden, making this scenario al…

High Energy Astrophysical Phenomena (astro-ph.HE)PhysicsNuclear and High Energy PhysicsAnnihilation010308 nuclear & particles physicsPhysics beyond the Standard ModelDark matterCosmic microwave backgroundFOS: Physical sciencesObservableAstrophysicsAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciencesHigh Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)Negative mass0103 physical sciences010306 general physicsAstrophysics - High Energy Astrophysical PhenomenaLight dark matterDwarf galaxy
researchProduct

Millimeter-Scale and Billion-Atom Reactive Force Field Simulation on Sunway Taihulight

2020

Large-scale molecular dynamics (MD) simulations on supercomputers play an increasingly important role in many research areas. With the capability of simulating charge equilibration (QEq), bonds and so on, Reactive force field (ReaxFF) enables the precise simulation of chemical reactions. Compared to the first principle molecular dynamics (FPMD), ReaxFF has far lower requirements on computational resources so that it can achieve higher efficiencies for large-scale simulations. In this article, we present our efforts on scaling ReaxFF on the Sunway TaihuLight Supercomputer (TaihuLight). We have carefully redesigned the force analysis and neighbor list building steps. By applying fine-grained …

Molecular dynamicsComputational Theory and MathematicsHardware and ArchitectureComputer scienceComputationSignal ProcessingScalabilityInverse trigonometric functionsReaxFFSupercomputerForce field (chemistry)Sunway TaihuLightComputational scienceIEEE Transactions on Parallel and Distributed Systems
researchProduct

Exposing dark sector with futureZ-factories

2019

We investigate the prospects of searching dark sector models via exotic [Formula: see text]-boson decay at future [Formula: see text] colliders with Giga [Formula: see text] and Tera [Formula: see text] options. Four general categories of dark sector models: Higgs portal dark matter, vector portal dark matter, inelastic dark matter and axion-like particles, are considered. Focusing on channels motivated by the dark sector models, we carry out a model independent study of the sensitivities of [Formula: see text]-factories in probing exotic decays. The limits on branching ratios of the exotic [Formula: see text] decay are typically [Formula: see text] for the Giga [Formula: see text] and [For…

PhysicsNuclear and High Energy PhysicsParticle physicsPhysics beyond the Standard ModelAstrophysics::Instrumentation and Methods for AstrophysicsEffective field theoryHiggs bosonComputer Science::General LiteratureHigh Energy Physics::ExperimentComputer Science::Computation and Language (Computational Linguistics and Natural Language and Speech Processing)Astronomy and AstrophysicsTera-Atomic and Molecular Physics and OpticsInternational Journal of Modern Physics A
researchProduct

Femtolensing by dark matter revisited

2018

Femtolensing of gamma ray bursts (GRBs) has been put forward as an exciting possibility to probe exotic astrophysical objects with masses below $10^{-13}$ solar masses such as small primordial black holes or ultra-compact dark matter minihalos, made up for instance of QCD axions. In this paper we critically review this idea, properly taking into account the extended nature of the source as well as wave optics effects. We demonstrate that most GRBs are inappropriate for femtolensing searches due to their large sizes. This removes the previous femtolensing bounds on primordial black holes, implying that vast regions of parameter space for primordial black hole dark matter are not robustly con…

Astrophysics and AstronomyCosmology and Nongalactic Astrophysics (astro-ph.CO)spectraAstrophysics::High Energy Astrophysical PhenomenaDark mattergravitational lensinghaloFOS: Physical sciencesPrimordial black holegamma ray experimentsAstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsParameter space01 natural sciencesHigh Energy Physics - Phenomenology (hep-ph)0103 physical sciences010306 general physicsAxionParticle Physics - PhenomenologyPhysicsQuantum chromodynamicsastro-ph.HEHigh Energy Astrophysical Phenomena (astro-ph.HE)Solar mass010308 nuclear & particles physicsraydark matter experimentsprimordial black holesAstronomy and Astrophysicshep-phPhysical opticsHigh Energy Physics - Phenomenologypair production13. Climate actionastro-ph.COGamma-ray burstlimitsAstrophysics - High Energy Astrophysical Phenomenagravitational-wavesAstrophysics - Cosmology and Nongalactic AstrophysicsJournal of Cosmology and Astroparticle Physics
researchProduct

Neighbor-list-free molecular dynamics on sunway TaihuLight supercomputer

2020

Molecular dynamics (MD) simulations are playing an increasingly important role in many research areas. Pair-wise potentials are widely used in MD simulations of bio-molecules, polymers, and nano-scale materials. Due to a low compute-to-memory-access ratio, their calculation is often bounded by memory transfer speeds. Sunway TaihuLight is one of the fastest supercomputers featuring a custom SW26010 many-core processor. Since the SW26010 has some critical limitations regarding main memory bandwidth and scratchpad memory size, it is considered as a good platform to investigate the optimization of pair-wise potentials especially in terms of data reusage. MD algorithms often use a neighbor-list …

020203 distributed computingComputer science020207 software engineeringMemory bandwidth02 engineering and technologyParallel computingSW26010Data structureSupercomputerVectorization (mathematics)0202 electrical engineering electronic engineering information engineeringNode (circuits)Sunway TaihuLightScratchpad memoryProceedings of the 25th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming
researchProduct

Looking for MACHOs in the Spectra of Fast Radio Bursts

2019

We explore a novel search strategy for dark matter in the form of massive compact halo objects (MACHOs) such as primordial black holes or dense mini-halos in the mass range from $10^{-4}$ to 0.1 solar masses. These objects can gravitationally lens the signal of fast radio bursts (FRBs), producing a characteristic interference pattern in the frequency spectrum, similar to the previously studied femtolensing signal in gamma ray burst spectra. Unlike traditional searches using microlensing, FRB lensing will probe the abundance of MACHOs at cosmological distance scales (~Gpc) rather than just their distribution in the neighborhood of the Milky Way. The method is thus particularly relevant for d…

Astrophysics and AstronomyCosmology and Nongalactic Astrophysics (astro-ph.CO)Milky WayAstrophysics::High Energy Astrophysical PhenomenaDark matterFOS: Physical sciencesPrimordial black holeAstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsGravitational microlensing01 natural sciencesHigh Energy Physics - Phenomenology (hep-ph)0103 physical sciencesMassive compact halo object010303 astronomy & astrophysicsAstrophysics::Galaxy AstrophysicsParticle Physics - PhenomenologyPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)astro-ph.HE010308 nuclear & particles physicsAstronomy and Astrophysicshep-phGalaxyInterstellar mediumHigh Energy Physics - PhenomenologySpace and Planetary Scienceastro-ph.COAstrophysics - High Energy Astrophysical PhenomenaGamma-ray burstAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

Optimization of Reactive Force Field Simulation: Refactor, Parallelization, and Vectorization for Interactions

2022

Molecular dynamics (MD) simulations are playing an increasingly important role in many areas ranging from chemical materials to biological molecules. With the continuing development of MD models, the potentials are getting larger and more complex. In this article, we focus on the reactive force field (ReaxFF) potential from LAMMPS to optimize the computation of interactions. We present our efforts on refactoring for neighbor list building, bond order computation, as well as valence angles and torsion angles computation. After redesigning these kernels, we develop a vectorized implementation for non-bonded interactions, which is nearly $100 \times$ 100 × faster than the management processing…

SpeedupComputational Theory and MathematicsXeonHardware and ArchitectureComputer scienceComputationSignal ProcessingVectorization (mathematics)Node (circuits)Parallel computingSupercomputerForce field (chemistry)Sunway TaihuLightIEEE Transactions on Parallel and Distributed Systems
researchProduct

Exposing the dark sector with future Z factories

2017

We investigate the prospects of searching dark sector models via exotic Z-boson decay at future e⁺e⁻ colliders with Giga Z and Tera Z options. Four general categories of dark sector models, Higgs portal dark matter, vector-portal dark matter, inelastic dark matter, and axionlike particles, are considered. Focusing on channels motivated by the dark sector models, we carry out a model-independent study of the sensitivities of Z factories in probing exotic decays. The limits on branching ratios of the exotic Z decay are typically O(10⁻⁶–10⁻[superscript 8.5]) for the Giga Z and O(10⁻[superscript 7.5]–10⁻¹¹) for the Tera Z, and they are compared with the projection for the high luminosity LHC. W…

PhysicsParticle physicsLarge Hadron Collider010308 nuclear & particles physicsPhysics beyond the Standard ModelDark matterFOS: Physical scienceshep-phAstrophysics::Cosmology and Extragalactic Astrophysics01 natural scienceslaw.inventionHidden sectorHigh Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)law0103 physical sciencesEffective field theoryHiggs bosonHigh Energy Physics::Experiment010306 general physicsColliderParticle Physics - PhenomenologyPhysical Review D
researchProduct

Cell-List based Molecular Dynamics on Many-Core Processors: A Case Study on Sunway TaihuLight Supercomputer

2020

Molecular dynamics (MD) simulations are playing an increasingly important role in several research areas. The most frequently used potentials in MD simulations are pair-wise potentials. Due to the memory wall, computing pair-wise potentials on many-core processors are usually memory bounded. In this paper, we take the SW26010 processor as an exemplary platform to explore the possibility to break the memory bottleneck by improving data reusage via cell-list-based methods. We use cell-lists instead of neighbor-lists in the potential computation, and apply a number of novel optimization methods. Theses methods include: an adaptive replica arrangement strategy, a parameter profile data structur…

CoprocessorCell lists010304 chemical physicsComputer scienceReplica020207 software engineering02 engineering and technologyParallel computingSupercomputerData structure01 natural sciencesBottleneckMolecular dynamics0103 physical sciencesScalability0202 electrical engineering electronic engineering information engineeringSunway TaihuLightSC20: International Conference for High Performance Computing, Networking, Storage and Analysis
researchProduct