0000000000583211

AUTHOR

Rupert Timpl

showing 2 related works from this author

Perlecan Maintains the Integrity of Cartilage and Some Basement Membranes

1999

Perlecan is a heparan sulfate proteoglycan that is expressed in all basement membranes (BMs), in cartilage, and several other mesenchymal tissues during development. Perlecan binds growth factors and interacts with various extracellular matrix proteins and cell adhesion molecules. Homozygous mice with a null mutation in the perlecan gene exhibit normal formation of BMs. However, BMs deteriorate in regions with increased mechanical stress such as the contracting myocardium and the expanding brain vesicles showing that perlecan is crucial for maintaining BM integrity. As a consequence, small clefts are formed in the cardiac muscle leading to blood leakage into the pericardial cavity and an ar…

Heart Defects Congenitalcardiac muscleMesenchymeSchwartz–Jampel syndromeRestriction MappingPerlecanBasement MembraneExtracellular matrixMiceMice CongenicchondrodysplasiaCalcification PhysiologicexencephalyLamininmedicineAnimalsNeural Tube DefectsCells CulturedBasement membranebiologyCartilageOssification HeterotopicHomozygoteCell Biologymedicine.diseaseMice Mutant StrainsBasement membrane assemblyCell biologyperlecanMutagenesis Insertionalmedicine.anatomical_structureCartilageBiochemistryGene Targetingbiology.proteinOriginal ArticleGenes LethalProteoglycansCollagenHeparitin SulfateExostoses Multiple HereditaryHeparan Sulfate ProteoglycansThe Journal of Cell Biology
researchProduct

Inhibition of glycosaminoglycan modification of perlecan domain I by site-directed mutagenesis changes protease sensitivity and laminin-1 binding act…

1998

AbstractGlycosaminoglycan attachment to perlecan domain I (173 residues) was completely prevented by site-directed mutagenesis of Ser-65, Ser-71 and Ser-76 as shown by recombinant production in mammalian cells. This did not interfere with the proper folding of the domain's SEA module but enhanced its sensitivity to neutral proteases. Lack of substitution also abolished binding to the two major heparin binding sites of laminin-1.

ProteasesBasement membraneRecombinant proteinmedicine.medical_treatmentMolecular Sequence DataBiophysicsPerlecanBiochemistrySubstrate SpecificityStructural BiologyLamininEndopeptidasesGeneticsmedicineAnimalsAmino Acid SequenceBinding siteSite-directed mutagenesisMolecular BiologyGlycosaminoglycansSite-directed mutagenesisBinding SitesProteasebiologyChemistryMutagenesisCell BiologyRecombinant ProteinsBiochemistryProteoglycanProteoglycanProteolysisMutagenesis Site-Directedbiology.proteinProteoglycansHeparitin SulfateLamininHeparan Sulfate ProteoglycansProtein BindingFEBS Letters
researchProduct