0000000000583391

AUTHOR

Jean-françois Hochedez

An iterative method in a probabilistic approach to the spectral inverse problem - Differential emission measure from line spectra and broadband data

Inverse problems are of great importance in astrophysics for deriving information about the physical characteristics of hot optically thin plasma sources from their EUV and X-ray spectra. We describe and test an iterative method developed within the framework of a probabilistic approach to the spectral inverse problem for determining the thermal structures of the emitting plasma. We also demonstrate applications of this method to both high resolution line spectra and broadband imaging data. Our so-called Bayesian iterative method (BIM) is an iterative procedure based on Bayes' theorem and is used to reconstruct differential emission measure (DEM) distributions. To demonstrate the abilities …

research product

XMM-Newton First-Light Observations of the Hickson Galaxy Group 16

This paper presents the XMM-Newton first-light observations of the Hickson-16 compact group of galaxies. Groups are possibly the oldest large-scale structures in the Universe, pre-dating clusters of galaxies, and are highly evolved. This group of small galaxies, at a redshift of 0.0132 (or 80 Mpc) is exceptional in the having the highest concentration of starburst or AGN activity in the nearby Universe. So it is a veritable laboratory for the study of the relationship between galaxy interactions and nuclear activity. Previous optical emission line studies indicated a strong ionising continuum in the galaxies, but its origin, whether from starbursts, or AGN, was unclear. Combined imaging and…

research product