0000000000583600

AUTHOR

R. B. Moore

showing 25 related works from this author

High-accuracy mass determination of unstable cesium and barium isotopes

1999

Direct mass measurements of short-lived Cs and Ba isotopes have been performed with the tandem Penning trap mass spectrometer ISOLTRAP installed at the on-line isotope separator ISOLDE at CERN. Typically, a mass resolving power of 600 000 and an accuracy of $\delta \mbox{m} \approx 13$ keV have been obtained. The masses of $^{123,124,126}$Ba and $^{122m}$Cs were measured for the first time. A least-squares adjustment has been performed and the experimental masses are compared with theoretical ones, particularly in the frame of a macroscopic-microscopic model.

PhysicsNuclear and High Energy PhysicsIsotope[PHYS.NEXP] Physics [physics]/Nuclear Experiment [nucl-ex]010308 nuclear & particles physicschemistry.chemical_element[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]Mass spectrometryPenning trap7. Clean energy01 natural sciencesISOLTRAPAtomic massNuclear physicsMasschemistryCaesium0103 physical sciencesNuclear Physics - ExperimentAtomic physicsNuclear Experiment010306 general physicsHybrid mass spectrometer
researchProduct

The manipulation of ions using electromagnetic traps

1992

Electromagnetic traps, in addition to providing very clean and gentle confinement for very precise and sensitive observation of charged particles, are very versatile devices for collecting and preparing charged particles from outside sources for observation by devices which are also outside, devices which may in themselves be other electromagnetic traps. This paper introduces the basic principles of using electromagnetic traps for collecting and cooling and presents some preliminary test results from using Paul traps for these purposes. Specifically, in relatively modest Paul traps with 28 mm between end electrodes a collection efficiency of 0.2% was achieved for a 60 keV DC beam of 132Xe i…

Materials scienceLarge Hadron Colliderbusiness.industryCondensed Matter PhysicsAtomic and Molecular Physics and OpticsCharged particleIonBooster (electric power)ElectrodeOptoelectronicsPhysics::Atomic PhysicsIon trapAtomic physicsbusinessMathematical PhysicsPhysica Scripta
researchProduct

High-accuracy mass determination of neutron-rich rubidium and strontiumiIsotopes

2002

The penning-trap mass spectrometer ISOLTRAP, installed at the on-line isotope separator ISOLDE at CERN, has been used to measure atomic masses of $^{88,89,90m,91,92,93,94}$Rb and $^{91- 95}$Sr. Using a resolving power of R $\!\scriptstyle\approx$1 million a mass accuracy of typically 10 keV was achieved for all nuclides. Discrepancies with older data are analyzed and discussed, leading to corrections to those data. Together with the present ISOLTRAP data these corrected data have been used in the general mass adjustment.

PhysicsNuclear and High Energy PhysicsIsotope010308 nuclear & particles physics[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]Mass spectrometryPenning trap01 natural sciencesISOLTRAPAtomic massNuclear physics0103 physical sciencesMass spectrumNeutronNuclear Physics - ExperimentNuclideAtomic physics010306 general physics
researchProduct

A linear radiofrequency quadrupole ion trap for the cooling and bunching of radioactive ion beams

2000

A linear radiofrequency quadrupole ion guide and beam buncher has been installed at the ISOLTRAP mass spectrometry experiment at the ISOLDE facility at CERN. The apparatus is being used as a beam cooling, accumulation, and bunching system. It operates with a buffer gas that cools the injected ions and converts the quasicontinuous 60- keV beam from the ISOLDE facility to 2.5-keV beam pulses with improved normalized transverse emittance. Recent measurements suggest a capture efficiency of the ion guide of up to 40% and a cooling and bunching efficiency of at least 12% which is expected to still be increased. The improved ISOLTRAP setup has so far been used very successfully in three on-line e…

PhysicsNuclear and High Energy PhysicsIon beam010308 nuclear & particles physics[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]Ion gunAccelerators and Storage Rings01 natural sciences7. Clean energyISOLTRAPNuclear physicsIon beam deposition0103 physical sciencesPhysics::Accelerator PhysicsIon trapAtomic physicsQuadrupole ion trapBeam emittanceNuclear Experiment010306 general physicsBeam (structure)Nuclear Physics A
researchProduct

Direct mass measurements of neutron-deficient xenon isotopes with the ISOLTRAP mass spectrometer

2000

Abstract The masses of Xe isotopes with 124⩾ A ⩾114 have been measured using the ISOLTRAP spectrometer at the on-line mass separator ISOLDE/CERN. A mass resolving power of 500 000 was chosen resulting in an accuracy of δm ≈12 keV for all isotopes investigated. Conflicts with existing mass data of several standard deviations were found.

PhysicsNuclear and High Energy PhysicsSpectrometer[PHYS.NEXP] Physics [physics]/Nuclear Experiment [nucl-ex]Physics::Instrumentation and Detectors010308 nuclear & particles physics[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]Mass spectrometry01 natural sciencesISOLTRAPAtomic massIsotopes of oxygenNuclear physics0103 physical sciencesIsotopes of xenonAtomic physicsParticle PhysicsNuclear Experiment010306 general physicsQuadrupole mass analyzerHybrid mass spectrometer
researchProduct

Nuclear shape transition in neutron-deficient gold isotopes

1987

4 pages, 1 table, 4 figures.

Nuclear and High Energy PhysicsIsotopeChemistryPhotoionizationCondensed Matter PhysicsMass spectrometryAtomic and Molecular Physics and OpticsEffective nuclear chargeIonizationPhysics::Atomic and Molecular ClustersNuclear Physics - ExperimentNeutronPhysics::Atomic PhysicsIsotopes of goldPhysical and Theoretical ChemistryAtomic physicsNuclear ExperimentHyperfine structure
researchProduct

A linear radiofrequency ion trap for accumulation, bunching, and emittance improvement of radioactive ion beams

2000

An ion beam cooler and buncher has been developed for the manipulation of radioactive ion beams. The gas-filled linear radiofrequency ion trap system is installed at the Penning trap mass spectrometer ISOLTRAP at ISOLDE/CERN. Its purpose is toaccumulate the 60-keV continuous ISOLDE ion beam with high efficiency and to convert it into low-energy low-emittance ion pulses. The efficiency was found to exceed 10\,\% in agreement with simulations. A more than 10-fold reduction of the ISOLDE beam emittance can be achieved. The system has been used successfully for first on-line experiments. Its principle, setup and performance will be discussed. An ion beam cooler and buncher has been developed fo…

Nuclear and High Energy PhysicsPhysics - Instrumentation and DetectorsIon beamIon trapFOS: Physical sciencesMass spectrometryIon cooling01 natural sciencesISOLTRAPIonNuclear physics0103 physical sciencesThermal emittance[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]Nuclear Experiment (nucl-ex)010306 general physicsNuclear ExperimentInstrumentationNuclear ExperimentRadioactive ion beamsIon guide21.10.Dr; 2.10.Bi; 07.75.+hPhysicsOn-line mass spectrometry010308 nuclear & particles physicsInstrumentation and Detectors (physics.ins-det)Penning trapAccelerators and Storage RingsIon buncherPhysics::Accelerator PhysicsIon trapBeam emittance
researchProduct

Mass measurements of very high accuracy by time-of-flight ion cyclotron resonance of ions injected into a penning trap

1989

Abstract The possibility of absolute mass measurements using time-of-flight detection of ion cyclotron resonance on ions injected into a Penning trap has been demonstrated. Resolving powers of 2 million have been achieved, with accuracies of about 0.5 ppm. Absolute accuracy is obtained by direct observation of the sum frequency of the cyclotron and the magnetron motions through the use of an azimuthal quadrupole r.f. field to transform initial magnetron motion into cyclotron motion. Imperfections of the Penning trap leading to systematic errors are discussed. The system has been designed specifically to measure the masses of radionuclides produced at the on-line isotope separator ISOLDE. Wi…

ChemistryCyclotronPenning trapFourier transform ion cyclotron resonancelaw.inventionIonTime of flightlawQuadrupoleDetectors and Experimental TechniquesAtomic physicsNuclear ExperimentSpectroscopyRadioactive decayIon cyclotron resonanceInternational Journal of Mass Spectrometry and Ion Processes
researchProduct

Isotope shifts of neutron-deficient gold isotopes with 193?A?190

1985

The isotope shift between197Au (stable) and the radioactive Au isotopes190Au,191Au,192Au and193Au were determined by resonance fluorescence spectroscopy in the 6s2S1/2–6p2P1/2.λ=267.6nm line. The unstable Au isotopes were produced at the ISOLDE mass separator at CERN. The nuclei were investigated semi on-line in a resonance vessel, heated to 1,400°C. The results areδν190,197=−11.12(39) GHz,δν191,197=−9.67(12) GHz,δν192,197=−8.32(15) GHz,δν193,197=−6.29(11) GHz, corresponding to a change of the mean-square charge radius byδ〈r2〉190,197 =0.261(12) fm2,δ〈r2〉191,197=0.227(5) fm2,δ〈r2〉192,197=0.195(5) fm2,δ〈r2〉193,197 =0.148(4) fm2.

PhysicsNuclear and High Energy PhysicsIsotopeResonance fluorescenceKinetic isotope effectAnalytical chemistryResonanceNeutronIsotopes of goldSpectroscopyMolecular electronic transitionZeitschrift f�r Physik A Atoms and Nuclei
researchProduct

First absolute mass measurements of short-lived isotopes

1987

Absolute mass measurements of short-lived isotopes have been performed at the on-line mass separator ISOLDE at CERN by determining the cyclotron frequencies of ions confined in a Penning trap. The cyclotron frequencies for77,78,85,86,88Rb and88Sr ions could be determined with a resolving power of 3×105 and an accuracy of better than 10−6, which corresponds to 100 keV for massA=100. The shortest-lived isotope under investigation was77Rb with a half-life of 3.7 min. The resonances obtained for the isobars88Rb and88Sr were clearly resolved.

Nuclear and High Energy PhysicsLarge Hadron ColliderIsotopeChemistryShort lived isotopesCyclotronCondensed Matter PhysicsPenning trapAtomic and Molecular Physics and OpticsFourier transform ion cyclotron resonanceIonlaw.inventionlawNuclear Physics - ExperimentPhysical and Theoretical ChemistryAtomic physicsIon cyclotron resonanceHyperfine Interactions
researchProduct

High-power pulsed dye laser with Fourier-limited bandwidth

1986

A high-peak-power, narrow-linewidth light source with a homogeneous beam profile has been constructed by modifications to a commercially available pulsed-dye-laser system. Output pulses of up to 10 mJ were generated with linewidths of about 50 MHz for 12-nsec pulses. The pulse-to-pulse frequency stability was better than the linewidth, and the center frequency could be scanned over a frequency range of 142.5 GHz at a wavelength of 600 nm. The performance of the system was demonstrated by observing the 6s2 1S0–6s7s1S0 transition in atomic mercury at 2λ = 312.8 nm and the 6s2S1/2–8s2S1/2 transition in atomic gold at 2λ = 308.9 nm using up to 1 mJ of frequency-doubled output for two-photon non…

Materials scienceDye laserbusiness.industryStatistical and Nonlinear PhysicsLaserAtomic and Molecular Physics and Opticslaw.inventionLaser linewidthWavelengthOpticslawExcited stateOptoelectronicsDetectors and Experimental TechniquesCenter frequencySpectroscopybusinessHyperfine structureJournal of the Optical Society of America B
researchProduct

Breakdown of the Isobaric Multiplet Mass Equation atA=33,T=3/2

2001

Mass measurements on ${}^{33,34,42,43}\mathrm{Ar}$ were performed using the Penning trap mass spectrometer ISOLTRAP and a newly constructed linear Paul trap. This arrangement allowed us, for the first time, to extend Penning trap mass measurements to nuclides with half-lives below one second ( ${}^{33}\mathrm{Ar}$: ${T}_{1/2}\phantom{\rule{0ex}{0ex}}=\phantom{\rule{0ex}{0ex}}174\mathrm{ms}$). A mass accuracy of about ${10}^{\ensuremath{-}7}$ $(\ensuremath{\delta}m\ensuremath{\approx}4\mathrm{keV})$ was achieved for all investigated nuclides. The isobaric multiplet mass equation was checked for the $A\phantom{\rule{0ex}{0ex}}=\phantom{\rule{0ex}{0ex}}33$, $T\phantom{\rule{0ex}{0ex}}=\phantom…

Mass formulaPhysicsMass numberGeneral Physics and AstronomyIsobaric processIon trapAtomic physicsQuadratic form (statistics)Penning trapISOLTRAPMultipletPhysical Review Letters
researchProduct

A new upper limit of the electron anti neutrino rest mass from tritium β-decay

1993

Abstract A new upper limit of the electron anti neutrino rest mass has been deduced from the tritium β-decay spectrum. A source of molecular tritium has been investigated with a new solenoid retarding spectrometer. The results are m ν ϵ 2 = −38.8 ± 34.1 stat ± 15.1 syst (eV) 2 /c 4 from which we conclude m ν ϵ ≤ 7.2 eV/c 2 with 95% c.l. Our β-endpoint corresponds to a 3H-3He atomic mass difference of Δm( 3 H- 3 He) = 18590.8 ± 3 eV/c 2 (1σ) .

Nuclear physicsPhysicsNuclear and High Energy PhysicsSpectrometerInvariant massTritiumLimit (mathematics)ElectronNeutrinoAtomic physicsAtomic and Molecular Physics and OpticsAtomic massNuclear Physics B - Proceedings Supplements
researchProduct

HITRAP: A Facility for Experiments with Trapped Highly Charged Ions

2001

HITRAP is a planned ion trap facility for capturing and cooling of highly charged ions produced at GSI in the heavy-ion complex of the UNILAC-SIS accelerators and the ESR storage ring. In this facility heavy highly charged ions up to uranium will be available as bare nuclei, hydrogenlike ions or few-electron systems at low temperatures. The trap for receiving and studying these ions is designed for operation at extremely high vacuum by cooling to cryogenic temperatures. The stored highly charged ions can be investigated in the trap itself or can be extracted from the trap at energies up to about 10 keV/q. The proposed physics experiments are collision studies with highly charged ions at wel…

Physics::Plasma PhysicsChemistryBinding energyUltra-high vacuumPhysics::Atomic PhysicsIon trapElectronAtomic physicsPenning trapSpectroscopyStorage ringIon
researchProduct

Penning-trap mass measurements of neutron-deficient Rb and Sr isotopes

1993

Abstract The Penning-trap mass spectrometer ISOLTRAP installed at the on-line mass separator ISOLDE 2 at CERN has been used for mass determination of 75–87 Rb and 78–83,87 Sr. Ions are captured in a Penning trap and their cyclotron frequency ω c = ( q m )B in the trapping field B is measured. Ratios of these frequencies lead to the determination of the atomic mass of these isotopes. A resolving power of typically m Δm = 10 6 and an accuracy of δm ≈10 keV is obtained. The mass of 78 Sr is measured for the first time and, in most cases, the mass values of the other isotopes are significantly improved. The experimental masses are compared with theoretical predictions.

PhysicsNuclear and High Energy Physics010308 nuclear & particles physics[PHYS.NEXP] Physics [physics]/Nuclear Experiment [nucl-ex]Isotopes of chlorine[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]Penning trapMass spectrometry7. Clean energy01 natural sciencesISOLTRAPIsotopes of oxygenAtomic massNuclear physicsMass0103 physical sciencesNuclear Physics - ExperimentAtomic physics010306 general physicsQuadrupole mass analyzer
researchProduct

High-Accuracy Mass Determination of Unstable Rb, Sr, Cs, Ba, Fr and Ra Isotopes with a Penning Trap Mass Spectrometer

1991

The majority of masses of radioactive isotopes has been measured by determination of Q-values in nuclear reactions or in nuclear decay. For a long time the use of direct mass determination has been limited to stable isotopes or isotopes close to stability. This changed in the 70’s with magnetic spectrometers put on-line to isotope separators. The Orsay group (Audi et al., 1986) succeeded in measuring the masses in long isotope chains of alkali elements. They impressively demonstrated the possibilities embedded in direct mass determination of isotopes far from stability. The persisting demand for more precise masses of short-lived isotopes (or exotic particles) has prompted during recent yea…

Nuclear reactionSpectrometerIsotopeChemistryStable isotope ratioCyclotron02 engineering and technology[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]021001 nanoscience & nanotechnologyMass spectrometryPenning trap01 natural sciences7. Clean energylaw.inventionNuclear physicslaw0103 physical sciencesPhysics::Atomic PhysicsNuclear Experiment010306 general physics0210 nano-technologyRadioactive decay
researchProduct

Accurate masses of neutron-deficient nuclides close to

2001

Abstract Mass measurements with the Penning-trap mass spectrometer ISOLTRAP at ISOLDE/CERN are extended to nonsurface ionizable species using newly developed ion-beam bunching devices. Masses of 179–197Hg, 196,198Pb, 197Bi, 198Po and 203At were determined with an accuracy of 1×10 −7 corresponding to δm≈20  keV. Applying a resolving power of up to 3.7×10 6 ground and isomeric states of 185,187,191,193,197Hg were separated. First experimental values for the isomeric excitation energy of 187,191Hg are obtained. A least-squares adjustment has been performed and theoretical approaches are discussed to model the observed fine structure in the binding energy.

PhysicsNuclear and High Energy PhysicsBinding energyNeutronNuclideAtomic physicsMass spectrometryPenning trapISOLTRAPAtomic massExcitationNuclear Physics A
researchProduct

Mass Determination of Francium and Radium Isotopes by a Penning Trap Mass Spectrometer

1992

Abstract A tandem Penning trap mass spectrometer is used for mass measurement of radioactive isotopes produced at the on-line isotope separator ISOLDE/CERN. The mass is determined directly and with high accuracy by measuring the cyclotron frequency of the stored ions. Measurements were performed on 209 210 211 212 221 222Fr and 226 230Ra. A resolving power of 5 × 105 was used and an accuracy of 1·8 × 10−7 has been achieved.

PhysicsIsotopeCyclotronchemistry.chemical_elementMass spectrometryPenning trapISOLTRAPAtomic and Molecular Physics and OpticsFranciumlaw.inventionRadiumNuclear physicschemistrylawNuclear Physics - ExperimentHybrid mass spectrometerJournal of Modern Optics
researchProduct

Towards Shorter-Lived Nuclides in ISOLTRAP Mass Measurements

2001

Recently, the applicability of Penning trap mass spectrometry has been extended to nuclides with a half-life of less than one second. The mass of 33Ar(T 1/2 = 174 ms) was measured using the ISOLTRAP spectrometer with an accuracy of 4.2 keV. This measurement provided a stringent test of the Isobaric Multiplet Mass Equation (IMME) at mass number A = 33 and isospin T = 3/2. The fast measurement cycle that shows the way to other measurements of very-short-lived nuclides is presented. Furthermore, the results of the IMME test are displayed.

Nuclear physicsMass numberChemistryNuclideIon trapAtomic physicsMass spectrometryPenning trapISOLTRAPAtomic massHybrid mass spectrometer
researchProduct

Extension of Penning-trap mass measurements to very short-lived nuclides

2000

Abstract Mass measurements on 33,34,42,43 Ar have been performed at the ISOLTRAP spectrometer. An accuracy of δm ≈4 keV has been achieved for all measured isotopes. With 33 Ar it is the first time that a nuclide with a half-life shorter than one second has been investigated using a Penning trap. This became possible due to the recently installed linear radio-frequency ion-trap system and an improved, faster measurement cycle.

PhysicsNuclear and High Energy PhysicsSpectrometerIsotope010308 nuclear & particles physics[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]Penning trap7. Clean energy01 natural sciencesISOLTRAPAtomic massNuclear physics13. Climate action0103 physical sciencesNuclear Physics - ExperimentIon trapNuclideAtomic physics010306 general physicsHybrid mass spectrometerNuclear Physics A
researchProduct

Sudden change in the nuclear charge distribution of very light gold isotopes

1987

4 pages, 3 tables, 2 figures.-- PACS nrs.: 21.10.Ft, 21.10.Ky, 27.70.+q.

PhysicsGeneral Physics and AstronomyCharge densityRadiusPhotoionizationEffective nuclear chargeTime of flight[PACS] Electromagnetic momentsIonization[PACS] Charge distribution150 ≤ A ≤ 189 [[PACS] Properties of specific nuclei listed by mass ranges]Nuclear Physics - ExperimentPhysics::Atomic PhysicsIsotopes of gold[PACS] Properties of specific nuclei listed by mass ranges:150 ≤ A ≤ 189Atomic physicsHyperfine structure
researchProduct

Direct mass measurements of unstable rare earth isotopes with the ISOLTRAP mass spectrometer

1996

Abstract Direct mass measurements of neutron deficient rare earth isotopes in the vicinity of 146 Gd were performed for the first time with the Penning trap mass spectrometer ISOLTRAP at ISOLDE/CERN. Since ISOL-facilities deliver these isotopes with a large amount of isobaric contamination, these measurements became possible only after the installation of a new cooler trap which acts as an isobar separator. To date more than 40 isotopes of the elements Pr, Nd, Pm, Sm, Eu, Dy, and Ho have been measured with a typical accuracy of δm ≈ 14 keV. Some of these isotopes provide an important anchor for many other isotopes linked by known Q-values.

PhysicsNuclear and High Energy PhysicsIsotope010308 nuclear & particles physicsIsotopes of argon[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]Mass spectrometryPenning trap01 natural sciences7. Clean energyISOLTRAPIsotopes of oxygenIsotopes of nitrogenNuclear physics13. Climate action0103 physical sciencesNeutronAtomic physics010306 general physicsNuclear Physics A
researchProduct

Resolution of nuclear ground and isomeric states by a Penning trap mass spectrometer.

1992

Ground and isomeric states of a nucleus have been resolved for the first time by mass spectrometry. Measurements on $^{78}\mathrm{Rb}^{\mathit{m},}$g and $^{84}\mathrm{Rb}^{\mathit{m},}$g were performed using a tandem Penning trap mass spectrometer on-line with the isotope separator ISOLDE/CERN. The effects of ion-ion interaction were investigated for two ion species differing in mass and stored simultaneously in the trap.

PhysicsNuclear and High Energy PhysicsIsotopeTandem010308 nuclear & particles physics[PHYS.NEXP] Physics [physics]/Nuclear Experiment [nucl-ex]Nuclear structure[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]Mass spectrometryPenning trap01 natural sciencesISOLTRAPIsotopes of rubidiumIon0103 physical sciencesNuclear Physics - ExperimentPhysics::Atomic PhysicsAtomic physicsNuclear Experiment010306 general physicsPhysical review. C, Nuclear physics
researchProduct

Collection, cooling and delivery of ISOL beams

1992

Abstract The collection of an ISOL beam in a Penning trap using implantation on a surface that is subsequently manipulated so as to become part of an end electrode of a Penning trap and reionization of the implanted material by heat has already been very productive for high-precision nuclear-mass measurements, even though it is limited to elements that are surface ionizable and the collection efficiencies are never better than about 0.1%. More recently, in 1990 a Paul trap system for electric collection of ions was installed at the ISOLDE-3 facility and collection was demonstrated for a 60 kV beam of 132 Xe ions. The purpose of this test setup was to determine the relationship between phase…

Nuclear and High Energy Physicsbusiness.industryChemistryRF power amplifierPenning trapIonTrap (computing)OpticsBooster (electric power)Ion trapAtomic physicsbusinessInstrumentationBeam (structure)VoltageNuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms
researchProduct

Direct mass measurements on neutron-deficient xenon isotopes with the ISOLTRAP mass spectrometer

2002

The masses of Xe isotopes with 124 A 114 have been measured using the ISOLTRAP spectrometer at the on-line mass separator ISOLDE/CERN. A mass resolving power of 500000 was chosen resulting in an accuracy of m 12 keV for all isotopes investigated. Con icts with existing mass data of several standard deviations were found. peerReviewed

massaspektrometriaatomic massesXenon isotopesPhysics::Instrumentation and Detectorspenning trapNuclear Experimentradioactive ions
researchProduct