0000000000583600
AUTHOR
R. B. Moore
High-accuracy mass determination of unstable cesium and barium isotopes
Direct mass measurements of short-lived Cs and Ba isotopes have been performed with the tandem Penning trap mass spectrometer ISOLTRAP installed at the on-line isotope separator ISOLDE at CERN. Typically, a mass resolving power of 600 000 and an accuracy of $\delta \mbox{m} \approx 13$ keV have been obtained. The masses of $^{123,124,126}$Ba and $^{122m}$Cs were measured for the first time. A least-squares adjustment has been performed and the experimental masses are compared with theoretical ones, particularly in the frame of a macroscopic-microscopic model.
The manipulation of ions using electromagnetic traps
Electromagnetic traps, in addition to providing very clean and gentle confinement for very precise and sensitive observation of charged particles, are very versatile devices for collecting and preparing charged particles from outside sources for observation by devices which are also outside, devices which may in themselves be other electromagnetic traps. This paper introduces the basic principles of using electromagnetic traps for collecting and cooling and presents some preliminary test results from using Paul traps for these purposes. Specifically, in relatively modest Paul traps with 28 mm between end electrodes a collection efficiency of 0.2% was achieved for a 60 keV DC beam of 132Xe i…
High-accuracy mass determination of neutron-rich rubidium and strontiumiIsotopes
The penning-trap mass spectrometer ISOLTRAP, installed at the on-line isotope separator ISOLDE at CERN, has been used to measure atomic masses of $^{88,89,90m,91,92,93,94}$Rb and $^{91- 95}$Sr. Using a resolving power of R $\!\scriptstyle\approx$1 million a mass accuracy of typically 10 keV was achieved for all nuclides. Discrepancies with older data are analyzed and discussed, leading to corrections to those data. Together with the present ISOLTRAP data these corrected data have been used in the general mass adjustment.
A linear radiofrequency quadrupole ion trap for the cooling and bunching of radioactive ion beams
A linear radiofrequency quadrupole ion guide and beam buncher has been installed at the ISOLTRAP mass spectrometry experiment at the ISOLDE facility at CERN. The apparatus is being used as a beam cooling, accumulation, and bunching system. It operates with a buffer gas that cools the injected ions and converts the quasicontinuous 60- keV beam from the ISOLDE facility to 2.5-keV beam pulses with improved normalized transverse emittance. Recent measurements suggest a capture efficiency of the ion guide of up to 40% and a cooling and bunching efficiency of at least 12% which is expected to still be increased. The improved ISOLTRAP setup has so far been used very successfully in three on-line e…
Direct mass measurements of neutron-deficient xenon isotopes with the ISOLTRAP mass spectrometer
Abstract The masses of Xe isotopes with 124⩾ A ⩾114 have been measured using the ISOLTRAP spectrometer at the on-line mass separator ISOLDE/CERN. A mass resolving power of 500 000 was chosen resulting in an accuracy of δm ≈12 keV for all isotopes investigated. Conflicts with existing mass data of several standard deviations were found.
Nuclear shape transition in neutron-deficient gold isotopes
4 pages, 1 table, 4 figures.
A linear radiofrequency ion trap for accumulation, bunching, and emittance improvement of radioactive ion beams
An ion beam cooler and buncher has been developed for the manipulation of radioactive ion beams. The gas-filled linear radiofrequency ion trap system is installed at the Penning trap mass spectrometer ISOLTRAP at ISOLDE/CERN. Its purpose is toaccumulate the 60-keV continuous ISOLDE ion beam with high efficiency and to convert it into low-energy low-emittance ion pulses. The efficiency was found to exceed 10\,\% in agreement with simulations. A more than 10-fold reduction of the ISOLDE beam emittance can be achieved. The system has been used successfully for first on-line experiments. Its principle, setup and performance will be discussed. An ion beam cooler and buncher has been developed fo…
Mass measurements of very high accuracy by time-of-flight ion cyclotron resonance of ions injected into a penning trap
Abstract The possibility of absolute mass measurements using time-of-flight detection of ion cyclotron resonance on ions injected into a Penning trap has been demonstrated. Resolving powers of 2 million have been achieved, with accuracies of about 0.5 ppm. Absolute accuracy is obtained by direct observation of the sum frequency of the cyclotron and the magnetron motions through the use of an azimuthal quadrupole r.f. field to transform initial magnetron motion into cyclotron motion. Imperfections of the Penning trap leading to systematic errors are discussed. The system has been designed specifically to measure the masses of radionuclides produced at the on-line isotope separator ISOLDE. Wi…
Direct mass measurements on neutron-deficient xenon isotopes with the ISOLTRAP mass spectrometer
The masses of Xe isotopes with 124 A 114 have been measured using the ISOLTRAP spectrometer at the on-line mass separator ISOLDE/CERN. A mass resolving power of 500000 was chosen resulting in an accuracy of m 12 keV for all isotopes investigated. Con icts with existing mass data of several standard deviations were found. peerReviewed
Isotope shifts of neutron-deficient gold isotopes with 193?A?190
The isotope shift between197Au (stable) and the radioactive Au isotopes190Au,191Au,192Au and193Au were determined by resonance fluorescence spectroscopy in the 6s2S1/2–6p2P1/2.λ=267.6nm line. The unstable Au isotopes were produced at the ISOLDE mass separator at CERN. The nuclei were investigated semi on-line in a resonance vessel, heated to 1,400°C. The results areδν190,197=−11.12(39) GHz,δν191,197=−9.67(12) GHz,δν192,197=−8.32(15) GHz,δν193,197=−6.29(11) GHz, corresponding to a change of the mean-square charge radius byδ〈r2〉190,197 =0.261(12) fm2,δ〈r2〉191,197=0.227(5) fm2,δ〈r2〉192,197=0.195(5) fm2,δ〈r2〉193,197 =0.148(4) fm2.
First absolute mass measurements of short-lived isotopes
Absolute mass measurements of short-lived isotopes have been performed at the on-line mass separator ISOLDE at CERN by determining the cyclotron frequencies of ions confined in a Penning trap. The cyclotron frequencies for77,78,85,86,88Rb and88Sr ions could be determined with a resolving power of 3×105 and an accuracy of better than 10−6, which corresponds to 100 keV for massA=100. The shortest-lived isotope under investigation was77Rb with a half-life of 3.7 min. The resonances obtained for the isobars88Rb and88Sr were clearly resolved.
High-power pulsed dye laser with Fourier-limited bandwidth
A high-peak-power, narrow-linewidth light source with a homogeneous beam profile has been constructed by modifications to a commercially available pulsed-dye-laser system. Output pulses of up to 10 mJ were generated with linewidths of about 50 MHz for 12-nsec pulses. The pulse-to-pulse frequency stability was better than the linewidth, and the center frequency could be scanned over a frequency range of 142.5 GHz at a wavelength of 600 nm. The performance of the system was demonstrated by observing the 6s2 1S0–6s7s1S0 transition in atomic mercury at 2λ = 312.8 nm and the 6s2S1/2–8s2S1/2 transition in atomic gold at 2λ = 308.9 nm using up to 1 mJ of frequency-doubled output for two-photon non…
Breakdown of the Isobaric Multiplet Mass Equation atA=33,T=3/2
Mass measurements on ${}^{33,34,42,43}\mathrm{Ar}$ were performed using the Penning trap mass spectrometer ISOLTRAP and a newly constructed linear Paul trap. This arrangement allowed us, for the first time, to extend Penning trap mass measurements to nuclides with half-lives below one second ( ${}^{33}\mathrm{Ar}$: ${T}_{1/2}\phantom{\rule{0ex}{0ex}}=\phantom{\rule{0ex}{0ex}}174\mathrm{ms}$). A mass accuracy of about ${10}^{\ensuremath{-}7}$ $(\ensuremath{\delta}m\ensuremath{\approx}4\mathrm{keV})$ was achieved for all investigated nuclides. The isobaric multiplet mass equation was checked for the $A\phantom{\rule{0ex}{0ex}}=\phantom{\rule{0ex}{0ex}}33$, $T\phantom{\rule{0ex}{0ex}}=\phantom…
A new upper limit of the electron anti neutrino rest mass from tritium β-decay
Abstract A new upper limit of the electron anti neutrino rest mass has been deduced from the tritium β-decay spectrum. A source of molecular tritium has been investigated with a new solenoid retarding spectrometer. The results are m ν ϵ 2 = −38.8 ± 34.1 stat ± 15.1 syst (eV) 2 /c 4 from which we conclude m ν ϵ ≤ 7.2 eV/c 2 with 95% c.l. Our β-endpoint corresponds to a 3H-3He atomic mass difference of Δm( 3 H- 3 He) = 18590.8 ± 3 eV/c 2 (1σ) .
HITRAP: A Facility for Experiments with Trapped Highly Charged Ions
HITRAP is a planned ion trap facility for capturing and cooling of highly charged ions produced at GSI in the heavy-ion complex of the UNILAC-SIS accelerators and the ESR storage ring. In this facility heavy highly charged ions up to uranium will be available as bare nuclei, hydrogenlike ions or few-electron systems at low temperatures. The trap for receiving and studying these ions is designed for operation at extremely high vacuum by cooling to cryogenic temperatures. The stored highly charged ions can be investigated in the trap itself or can be extracted from the trap at energies up to about 10 keV/q. The proposed physics experiments are collision studies with highly charged ions at wel…
Penning-trap mass measurements of neutron-deficient Rb and Sr isotopes
Abstract The Penning-trap mass spectrometer ISOLTRAP installed at the on-line mass separator ISOLDE 2 at CERN has been used for mass determination of 75–87 Rb and 78–83,87 Sr. Ions are captured in a Penning trap and their cyclotron frequency ω c = ( q m )B in the trapping field B is measured. Ratios of these frequencies lead to the determination of the atomic mass of these isotopes. A resolving power of typically m Δm = 10 6 and an accuracy of δm ≈10 keV is obtained. The mass of 78 Sr is measured for the first time and, in most cases, the mass values of the other isotopes are significantly improved. The experimental masses are compared with theoretical predictions.
High-Accuracy Mass Determination of Unstable Rb, Sr, Cs, Ba, Fr and Ra Isotopes with a Penning Trap Mass Spectrometer
The majority of masses of radioactive isotopes has been measured by determination of Q-values in nuclear reactions or in nuclear decay. For a long time the use of direct mass determination has been limited to stable isotopes or isotopes close to stability. This changed in the 70’s with magnetic spectrometers put on-line to isotope separators. The Orsay group (Audi et al., 1986) succeeded in measuring the masses in long isotope chains of alkali elements. They impressively demonstrated the possibilities embedded in direct mass determination of isotopes far from stability. The persisting demand for more precise masses of short-lived isotopes (or exotic particles) has prompted during recent yea…
Accurate masses of neutron-deficient nuclides close to
Abstract Mass measurements with the Penning-trap mass spectrometer ISOLTRAP at ISOLDE/CERN are extended to nonsurface ionizable species using newly developed ion-beam bunching devices. Masses of 179–197Hg, 196,198Pb, 197Bi, 198Po and 203At were determined with an accuracy of 1×10 −7 corresponding to δm≈20 keV. Applying a resolving power of up to 3.7×10 6 ground and isomeric states of 185,187,191,193,197Hg were separated. First experimental values for the isomeric excitation energy of 187,191Hg are obtained. A least-squares adjustment has been performed and theoretical approaches are discussed to model the observed fine structure in the binding energy.
Mass Determination of Francium and Radium Isotopes by a Penning Trap Mass Spectrometer
Abstract A tandem Penning trap mass spectrometer is used for mass measurement of radioactive isotopes produced at the on-line isotope separator ISOLDE/CERN. The mass is determined directly and with high accuracy by measuring the cyclotron frequency of the stored ions. Measurements were performed on 209 210 211 212 221 222Fr and 226 230Ra. A resolving power of 5 × 105 was used and an accuracy of 1·8 × 10−7 has been achieved.
Towards Shorter-Lived Nuclides in ISOLTRAP Mass Measurements
Recently, the applicability of Penning trap mass spectrometry has been extended to nuclides with a half-life of less than one second. The mass of 33Ar(T 1/2 = 174 ms) was measured using the ISOLTRAP spectrometer with an accuracy of 4.2 keV. This measurement provided a stringent test of the Isobaric Multiplet Mass Equation (IMME) at mass number A = 33 and isospin T = 3/2. The fast measurement cycle that shows the way to other measurements of very-short-lived nuclides is presented. Furthermore, the results of the IMME test are displayed.
Extension of Penning-trap mass measurements to very short-lived nuclides
Abstract Mass measurements on 33,34,42,43 Ar have been performed at the ISOLTRAP spectrometer. An accuracy of δm ≈4 keV has been achieved for all measured isotopes. With 33 Ar it is the first time that a nuclide with a half-life shorter than one second has been investigated using a Penning trap. This became possible due to the recently installed linear radio-frequency ion-trap system and an improved, faster measurement cycle.
Sudden change in the nuclear charge distribution of very light gold isotopes
4 pages, 3 tables, 2 figures.-- PACS nrs.: 21.10.Ft, 21.10.Ky, 27.70.+q.
Direct mass measurements of unstable rare earth isotopes with the ISOLTRAP mass spectrometer
Abstract Direct mass measurements of neutron deficient rare earth isotopes in the vicinity of 146 Gd were performed for the first time with the Penning trap mass spectrometer ISOLTRAP at ISOLDE/CERN. Since ISOL-facilities deliver these isotopes with a large amount of isobaric contamination, these measurements became possible only after the installation of a new cooler trap which acts as an isobar separator. To date more than 40 isotopes of the elements Pr, Nd, Pm, Sm, Eu, Dy, and Ho have been measured with a typical accuracy of δm ≈ 14 keV. Some of these isotopes provide an important anchor for many other isotopes linked by known Q-values.
Resolution of nuclear ground and isomeric states by a Penning trap mass spectrometer.
Ground and isomeric states of a nucleus have been resolved for the first time by mass spectrometry. Measurements on $^{78}\mathrm{Rb}^{\mathit{m},}$g and $^{84}\mathrm{Rb}^{\mathit{m},}$g were performed using a tandem Penning trap mass spectrometer on-line with the isotope separator ISOLDE/CERN. The effects of ion-ion interaction were investigated for two ion species differing in mass and stored simultaneously in the trap.
Collection, cooling and delivery of ISOL beams
Abstract The collection of an ISOL beam in a Penning trap using implantation on a surface that is subsequently manipulated so as to become part of an end electrode of a Penning trap and reionization of the implanted material by heat has already been very productive for high-precision nuclear-mass measurements, even though it is limited to elements that are surface ionizable and the collection efficiencies are never better than about 0.1%. More recently, in 1990 a Paul trap system for electric collection of ions was installed at the ISOLDE-3 facility and collection was demonstrated for a 60 kV beam of 132 Xe ions. The purpose of this test setup was to determine the relationship between phase…