Imaging strong blazars with space VLBI
Abstract The RadioAstron mission has obtained a series of detailed multi-frequency images of the brightest blazars of the radio sky concentrated in three key science programs. We present here results of the program on powerful jets in blazars. In the first two years of the mission, observations of compact relativistic jets in 0836+710, 3C 345, 3C 273, and 4C +69.21 were made at λ λ 18, 6, and 1.3 cm. The resulting images have revealed compact emitting regions with brightness temperature in excess of 10 13 K and a complex jet structure that can be explained by plasma instability developing in a relativistic outflow. We present here some highlights of these space-VLBI observations, designed…
RadioAstron reveals a spine-sheath jet structure in 3C 273
We present Space-VLBI RadioAstron observations at 1.6 GHz and 4.8 GHz of the flat spectrum radio quasar 3C 273, with detections on baselines up to 4.5 and 3.3 Earth Diameters, respectively. Achieving the best angular resolution at 1.6 GHz to date, we have imaged limb-brightening in the jet, not previously detected in this source. In contrast, at 4.8 GHz, we detected emission from a central stream of plasma, with a spatial distribution complementary to the limb-brightened emission, indicating an origin in the spine of the jet. While a stratification across the jet width in the flow density, internal energy, magnetic field, or bulk flow velocity are usually invoked to explain the limb-brighte…
Multiband RadioAstron space VLBI imaging of the jet in quasar S5 0836+710
Open Access article, published by EDP Sciences, under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.-- Open Access funding provided by Max Planck Society.
Probing the innermost regions of AGN jets and their magnetic fields with RadioAstron II. Observations of 3C 273 at minimum activity
RadioAstron is a 10 m orbiting radio telescope mounted on the Spektr-R satellite, launched in 2011, performing Space Very Long Baseline Interferometry (SVLBI) observations supported by a global ground array of radio telescopes. With an apogee of about 350 000 km, it is offering for the first time the possibility to perform {\mu}as-resolution imaging in the cm-band. We present observations at 22 GHz of 3C 273, performed in 2014, designed to reach a maximum baseline of approximately nine Earth diameters. Reaching an angular resolution of 0.3 mas, we study a particularly low-activity state of the source, and estimate the nuclear region brightness temperature, comparing with the extreme one det…