0000000000585799

AUTHOR

Tim Hansmeier

Enabling XCSF to cope with dynamic environments via an adaptive error threshold

The learning classifier system XCSF is a variant of XCS employed for function approximation. Although XCSF is a promising candidate for deployment in autonomous systems, its parameter dependability imposes a significant hurdle, as a-priori parameter optimization is not feasible for complex and changing environmental conditions. One of the most important parameters is the error threshold, which can be interpreted as a target bound on the approximation error and has to be set according to the approximated function. To enable XCSF to reliably approximate functions that change during runtime, we propose the use of an error threshold, which is adapted at run-time based on the currently achieved …

research product

An adaption mechanism for the error threshold of XCSF

Learning Classifier System (LCS) is a class of rule-based learning algorithms, which combine reinforcement learning (RL) and genetic algorithm (GA) techniques to evolve a population of classifiers. The most prominent example is XCS, for which many variants have been proposed in the past, including XCSF for function approximation. Although XCSF is a promising candidate for supporting autonomy in computing systems, it still must undergo parameter optimization prior to deployment. However, in case the later deployment environment is unknown, a-priori parameter optimization is not possible, raising the need for XCSF to automatically determine suitable parameter values at run-time. One of the mo…

research product