0000000000586010
AUTHOR
Gersende Fort
QUANTITATIVE CONVERGENCE RATES FOR SUBGEOMETRIC MARKOV CHAINS
We provide explicit expressions for the constants involved in the characterisation of ergodicity of subgeometric Markov chains. The constants are determined in terms of those appearing in the assumed drift and one-step minorisation conditions. The results are fundamental for the study of some algorithms where uniform bounds for these constants are needed for a family of Markov kernels. Our results accommodate also some classes of inhomogeneous chains.
Convergence of Markovian Stochastic Approximation with discontinuous dynamics
This paper is devoted to the convergence analysis of stochastic approximation algorithms of the form $\theta_{n+1} = \theta_n + \gamma_{n+1} H_{\theta_n}({X_{n+1}})$, where ${\left\{ {\theta}_n, n \in {\mathbb{N}} \right\}}$ is an ${\mathbb{R}}^d$-valued sequence, ${\left\{ {\gamma}_n, n \in {\mathbb{N}} \right\}}$ is a deterministic stepsize sequence, and ${\left\{ {X}_n, n \in {\mathbb{N}} \right\}}$ is a controlled Markov chain. We study the convergence under weak assumptions on smoothness-in-$\theta$ of the function $\theta \mapsto H_{\theta}({x})$. It is usually assumed that this function is continuous for any $x$; in this work, we relax this condition. Our results are illustrated by c…