0000000000586222
AUTHOR
Jean-marc Lévêque
Task-specific ionic liquid for the depolymerisation of starch-based industrial waste into high reducing sugars
Development of a simple route for the catalytic conversion of starch-based industrial waste (potato peels) and potato starch into reducing sugars was investigated in two ionic liquids for comparison – 1-allyl-3-methylimidazolium chloride [AMIM]Cl and 1-(4-sulfobutyl)-3-methylimidazolium chloride [SBMIM]Cl. Over a two hour period, a 20 wt% solution containing up to 43% and 98% of reducing sugars at low temperature in aqueous [SBMIM]Cl was achieved for the starch-based waste and the potato starch, respectively. In addition, the use of microwave and low frequency ultrasound to perform the depolymerisation of the raw starch-based material was explored and compared with conventional heating proc…
Direct acid-catalysed mechanical depolymerisation of fibre sludge to reducing sugars using planetary milling
Abstract This study performed a direct solvent-free acid-catalysed mechanical depolymerisation of fibre sludge to reducing sugars which involves one step of acid milling in a planetary mill. The common reported ‘solvent-free’ mechanocatalytic depolymerisation of lignocellulose which includes 1) acid impregnation, 2) vacuum evaporation and 3) mechanocatalytic depolymerisation was also performed as a reference. The major converted monosaccharides were determined by capillary electrophoresis and the results of total reducing sugar (TRS) yields were carried out based on the 3,5-dinitrosalicylic acid (DNS) method. The results showed that the TRS conversion of direct acid-catalysed mechanical dep…
Rapid one-step solvent-free acid-catalyzed mechanical depolymerization of pine sawdust to high-yield water-soluble sugars
Abstract One-step absolute solvent-free acid-catalyzed mechanical depolymerization of pine sawdust (PSD) and commercially available α-cellulose to water-soluble sugars was carried out using ball milling. For comparison purposes, the commonly reported “solvent-free” mechanocatalytic depolymerization of lignocellulose method, which normally involves three steps (acid impregnation in solvent, vacuum drying, and mechanical depolymerization of lignocellulose), was performed. The 3,5-dinitrosalicylic acid (DNS) method was used to measure the total reducing sugar (TRS) of the obtained sugar solution, and major monosaccharides in the solution were analyzed by capillary electrophoresis (CE). More th…