0000000000586302
AUTHOR
Alejandro Alcaine
In silico pace-mapping: prediction of left vs. right outflow tract origin in idiopathic ventricular arrhythmias with patient-specific electrophysiological simulations
Abstract Aims A pre-operative non-invasive identification of the site of origin (SOO) of outflow tract ventricular arrhythmias (OTVAs) is important to properly plan radiofrequency ablation procedures. Although some algorithms based on electrocardiograms (ECGs) have been developed to predict left vs. right ventricular origins, their accuracy is still limited, especially in complex anatomies. The aim of this work is to use patient-specific electrophysiological simulations of the heart to predict the SOO in OTVA patients. Methods and results An in silico pace-mapping procedure was designed and used on 11 heart geometries, generating for each case simulated ECGs from 12 clinically plausible SOO…
A Multi-Variate Predictability Framework to Assess Invasive Cardiac Activity and Interactions during Atrial Fibrillation
Objective: This study introduces a predictability framework based on the concept of Granger causality (GC), in order to analyze the activity and interactions between different intracardiac sites during atrial fibrillation (AF). Methods: GC-based interactions were studied using a three-electrode analysis scheme with multi-variate autoregressive models of the involved preprocessed intracardiac signals. The method was evaluated in different scenarios covering simulations of complex atrial activity as well as endocardial signals acquired from patients. Results: The results illustrate the ability of the method to determine atrial rhythm complexity and to track and map propagation during AF. Conc…
A rule‐based method to model myocardial fiber orientation in cardiac biventricular geometries with outflow tracts
Rule-based methods are often used for assigning fiber orientation to cardiac anatomical models. However, existing methods have been developed using data mostly from the left ventricle. As a consequence, fiber information obtained from rule-based methods often does not match histological data in other areas of the heart such as the right ventricle, having a negative impact in cardiac simulations beyond the left ventricle. In this work, we present a rule-based method where fiber orientation is separately modeled in each ventricle following observations from histology. This allows to create detailed fiber orientation in specific regions such as the endocardium of the right ventricle, the inter…