0000000000586319
AUTHOR
Tanju Gleisberg
From loops to trees by-passing Feynman's theorem
We derive a duality relation between one-loop integrals and phase-space integrals emerging from them through single cuts. The duality relation is realized by a modification of the customary +i0 prescription of the Feynman propagators. The new prescription regularizing the propagators, which we write in a Lorentz covariant form, compensates for the absence of multiple-cut contributions that appear in the Feynman Tree Theorem. The duality relation can be applied to generic one-loop quantities in any relativistic, local and unitary field theories. %It is suitable for applications to the analytical calculation of %one-loop scattering amplitudes, and to the numerical evaluation of %cross-section…
From multileg loops to trees (by-passing Feynman's Tree Theorem)
We illustrate a duality relation between one-loop integrals and single-cut phase-space integrals. The duality relation is realised by a modification of the customary +i0 prescription of the Feynman propagators. The new prescription regularizing the propagators, which we write in a Lorentz covariant form, compensates for the absence of multiple-cut contributions that appear in the Feynman Tree Theorem. The duality relation can be extended to generic one-loop quantities, such as Green's functions, in any relativistic, local and unitary field theories.