0000000000587321

AUTHOR

Fernando Setien

showing 3 related works from this author

Epigenetic differences arise during the lifetime of monozygotic twins.

2005

Monozygous twins share a common genotype. However, most monozygotic twin pairs are not identical; several types of phenotypic discordance may be observed, such as differences in susceptibilities to disease and a wide range of anthropomorphic features. There are several possible explanations for these observations, but one is the existence of epigenetic differences. To address this issue, we examined the global and locus-specific differences in DNA methylation and histone acetylation of a large cohort of monozygotic twins. We found that, although twins are epigenetically indistinguishable during the early years of life, older monozygous twins exhibited remarkable differences in their overall…

AdultMalemedicine.medical_specialtyADNRestriction MappingTwinsMonozygotic twinX-inactivationEpigenesis GeneticHistonesX Chromosome InactivationSurveys and QuestionnairesGenotypemedicineHumansEpigeneticsOligonucleotide Array Sequence AnalysisGeneticsAnalysis of VarianceMultidisciplinarybiologyReverse Transcriptase Polymerase Chain ReactionElectrophoresis CapillaryGene Expression Regulation DevelopmentalAcetylationNucleic acid amplification techniqueDNASequence Analysis DNATwins MonozygoticDNA MethylationExpressió gènicaFenotipHistonePhenotypeSpainDNA methylationbiology.protein5-MethylcytosineCommentaryMedical geneticsBessonsFemaleGene expressionNucleic Acid Amplification TechniquesProceedings of the National Academy of Sciences of the United States of America
researchProduct

DNA methylomes reveal biological networks involved in human eye development, functions and associated disorders

2017

This work provides a comprehensive CpG methylation landscape of the different layers of the human eye that unveils the gene networks associated with their biological functions and how these are disrupted in common visual disorders. Herein, we firstly determined the role of CpG methylation in the regulation of ocular tissue-specification and described hypermethylation of retinal transcription factors (i.e., PAX6, RAX, SIX6) in a tissue-dependent manner. Second, we have characterized the DNA methylome of visual disorders linked to internal and external environmental factors. Main conclusions allow certifying that crucial pathways related to Wnt-MAPK signaling pathways or neuroinflammation are…

0301 basic medicineMaleADNlcsh:MedicineUllRetinal NeovascularizationEyeEpigenesis Genetic0302 clinical medicinelcsh:ScienceChildCàncerCancerRegulation of gene expressionMultidisciplinaryRetinoblastomaMelanomaMethylationDNA NeoplasmOphthalmopathiesNeoplasm ProteinsGene Expression Regulation NeoplasticOftalmologiaChild PreschoolDNA methylationFemaleMetilacióOftalmopatiesAdultMAP Kinase Signaling SystemBiologyMethylationArticle03 medical and health sciencesETS1medicineHumansEye ProteinsTranscription factorDiabetic RetinopathyEye Neoplasmslcsh:RDNADNA Methylationmedicine.diseaseeye diseasesOphthalmology030104 developmental biologyImmunology030221 ophthalmology & optometryCancer researchlcsh:QPAX6
researchProduct

Gene Amplification-Associated Overexpression of the Selenoprotein tRNA Enzyme TRIT1 Confers Sensitivity to Arsenic Trioxide in Small-Cell Lung Cancer

2021

Simple Summary Small-cell lung cancer accounts for approximately 13% of all new lung cancer diagnoses, but in contrast to non-small-cell lung cancer, the implementation of targeted treatments in small-cell lung cancer has been limited, with little improvement in the clinical outcome in the last several decades. Exploring new pathways for targeted therapy, we have observed that extra-copies of the tRNA modifier TRIT1, involved in the translation of selenoproteins, confers sensitivity to arsenic trioxide in small-cell lung cancer. This finding could open a new therapeutic niche for a tumor type with such a dismal clinical course. The alteration of RNA modification patterns is emerging as a co…

Cancer Researchgene amplificationCellTRIT1lcsh:RC254-282Articlechemistry.chemical_compoundRNA modificationsGene duplicationmedicinesmall-cell lung cancerArsenic trioxideGenechemistry.chemical_classificationSelenocysteineChemistryRNAlcsh:Neoplasms. Tumors. Oncology. Including cancer and carcinogenstransfer RNACell biologymedicine.anatomical_structureOncologyTransfer RNAselenoproteinsCàncer de pulmóRNASelenoproteinLung cancer
researchProduct