0000000000587400

AUTHOR

Philipp Drews

0000-0002-6567-1601

showing 2 related works from this author

Overview of diagnostic performance and results for the first operation phase in Wendelstein 7-X (invited)

2016

Wendelstein 7-X, a superconducting optimized stellarator built in Greifswald/Germany, started its first plasmas with the last closed flux surface (LCFS) defined by 5 uncooled graphite limiters in December 2015. At the end of the 10 weeks long experimental campaign (OP1.1) more than 20 independent diagnostic systems were in operation, allowing detailed studies of many interesting plasma phenomena. For example, fast neutral gas manometers supported by video cameras (including one fast-frame camera with frame rates of tens of kHz) as well as visible cameras with different interference filters, with field of views covering all ten half-modules of the stellarator, discovered a MARFE-like radiati…

Physicsbusiness.industryPlasma parametersInstrumentationPlasma01 natural sciencesRadiation zone010305 fluids & plasmaslaw.inventionOpticslaw0103 physical sciencesLimiterddc:530Plasma diagnosticsWendelstein 7-X010306 general physicsbusinessInstrumentationStellaratorReview of Scientific Instruments
researchProduct

Overview of the JET results in support to ITER

2017

The 2014–2016 JET results are reviewed in the light of their significance for optimising the ITER research plan for the active and non-active operation. More than 60 h of plasma operation with ITER first wall materials successfully took place since its installation in 2011. New multi-machine scaling of the type I-ELM divertor energy flux density to ITER is supported by first principle modelling. ITER relevant disruption experiments and first principle modelling are reported with a set of three disruption mitigation valves mimicking the ITER setup. Insights of the L–H power threshold in Deuterium and Hydrogen are given, stressing the importance of the magnetic configurations and the recent m…

Technologyfusion:Física [Ciências exactas e naturais]TokamakNuclear engineeringDIAGNOSTICS01 natural sciencesILW010305 fluids & plasmaslaw.inventionIlw[SPI.MECA.MEFL]Engineering Sciences [physics]/Mechanics [physics.med-ph]/Fluids mechanics [physics.class-ph]PlasmaH-Mode PlasmaslawITERDisruption PredictionCOLLISIONALITYEDGE LOCALIZED MODESDiagnosticsOperationfusion; ITER; JET; plasma; Nuclear and High Energy Physics; Condensed Matter PhysicsPhysicsJet (fluid)JET plasma fusion ITERDivertorSettore FIS/01 - Fisica SperimentaleCondensed Matter PhysicsFusion Plasma and Space PhysicsDENSITY PEAKINGCarbon WallH-MODE PLASMAS[ SPI.MECA.MEFL ] Engineering Sciences [physics]/Mechanics [physics.med-ph]/Fluids mechanics [physics.class-ph]Density PeakingNuclear and High Energy PhysicsNeutron transportFacing ComponentsCollisionality114 Physical sciencesFísica FísicaNuclear physics:Physical sciences [Natural sciences]Fusion plasma och rymdfysikPedestal0103 physical sciencesNuclear fusionddc:530Neutron010306 general physicsFusionplasmaPhysics Physical sciencesNuclear and High Energy PhysicEdge Localized ModesQC717:Física [Àrees temàtiques de la UPC]Reactors de fusióFísicaFACING COMPONENTSFusion reactorsJetJETCARBON WALLDISRUPTION PREDICTIONOPERATIONddc:600Collisionality
researchProduct