0000000000587606
AUTHOR
J. Sinova
Electric control of the spin Hall effect by intervalley transitions
Controlling spin-related material properties by electronic means is a key step towards future spintronic technologies. The spin Hall effect (SHE) has become increasingly important for generating, detecting and using spin currents, but its strength-quantified in terms of the SHE angle-is ultimately fixed by the magnitude of the spin-orbit coupling (SOC) present for any given material system. However, if the electrons generating the SHE can be controlled by populating different areas (valleys) of the electronic structure with different SOC characteristic the SHE angle can be tuned directly within a single sample. Here we report the manipulation of the SHE in bulk GaAs at room temperature by m…
Emission of coherent THz magnons in an antiferromagnetic insulator triggered by ultrafast spin-phonon interactions
Antiferromagnetic materials have been proposed as new types of narrowband THz spintronic devices owing to their ultrafast spin dynamics. Manipulating coherently their spin dynamics, however, remains a key challenge that is envisioned to be accomplished by spin-orbit torques or direct optical excitations. Here, we demonstrate the combined generation of broadband THz (incoherent) magnons and narrowband (coherent) magnons at 1 THz in low damping thin films of NiO/Pt. We evidence, experimentally and through modelling, two excitation processes of magnetization dynamics in NiO, an off-resonant instantaneous optical spin torque and a strain-wave-induced THz torque induced by ultrafast Pt excitatio…
Exchange Splitting of a Hybrid Surface State and Ferromagnetic Order in a 2D Surface Alloy
Surface alloys are highly flexible materials for tailoring the spin-dependent properties of surfaces. Here, we study the spin-dependent band structure of a DyAg$_2$ surface alloy formed on an Ag(111) crystal. We find a significant exchange spin-splitting of the localized Dy 4f states pointing to a ferromagnetic coupling between the localized Dy moments at $40\,$K. The magnetic coupling between these moments is mediated by an indirect, RKKY-like exchange coupling via the spin-polarized electrons of the hole-like Dy-Ag hybrid surface state.
N\'{e}el Spin Orbit Torque driven antiferromagnetic resonance in Mn$_{2}$Au probed by time-domain THz spectroscopy
We observe the excitation of collective modes in the THz range driven by the recently discovered N\'{e}el spin-orbit torques (NSOT) in the metallic antiferromagnet Mn$_{2}$Au. Temperature dependent THz spectroscopy reveals a strong absorption mode centered near 1 THz, which upon heating from 4 K to 450 K softens and looses intensity. Comparison with the estimated eigenmode frequencies implies that the observed mode is an in-plane antiferromagnetic resonance (AFMR) mode. The AFMR absorption strength exceeds those found in antiferromagnetic insulators, driven by the magnetic field of the THz radiation, by three orders of magnitude. Based on this and the agreement with our theory modelling, we…
THz electrical writing speed in an antiferromagnetic memory
The speed of writing of state-of-the-art ferromagnetic memories is physically limited by an intrinsic GHz threshold. Recently, an alternative research direction has been initiated by realizing memory devices based on antiferromagnets in which spin directions periodically alternate from one atomic lattice site to the next. In our work we experimentally demonstrate at room temperature that the speed of reversible electrical writing in a memory device can be scaled up to THz using an antiferromagnet. Efficient current-induced spin-torque mechanism is responsible for the switching in our memory devices throughout the twelve orders of magnitude range of writing speeds from Hz to THz. Our work op…
Narrow-band tunable THz detector in antiferromagnets via N\'eel spin-orbit torque and spin-transfer torque
We study dynamics of antiferromagnets induced by simultaneous application of dc spin current and ac charge current, motivated by the requirement of all-electrically controlled devices in THz gap (0.1-30 THz). We show that ac electric current, via N\'eel spin orbit torques, can lock the phase of a steady rotating N\'eel vector whose precession is controlled by a dc spin current. In the phase-locking regime the frequency of the incoming ac signal coincides with the frequency of autooscillations which for typical antiferromagnets fall into the THz range. The frequency of autooscillations is proportional to the precession-induced tilting of the magnetic sublattices related to the so-called dyna…