0000000000587734
AUTHOR
Russell G. Egdell
Structural, electronic, and electrical properties of an Undoped n-Type CdO thin film with high electron concentration
Transparent conducting metal oxides (TCOs) combine the properties of optical transparency in the visible region with a high electrical conductivity. They are a critical component as the window electrode in liquid crystal and electroluminescent display devices, as well as in many designs of solar cells now under development. Sn-doped In2O3 is currently the most important TCO, but it suffers from some drawbacks. These include the high cost of indium, weak optical absorption in the blue-green region, as well as chemical instability that leads to corrosion phenomena in organic light-emitting devices. Indium tin oxide (ITO) films are also brittle and of relatively low durability. A number of oth…
Nanostructured CdO thin films for water treatments
Abstract CdO was the very first transparent conducting metal oxide discovered. CdO thin films show electrical and optical properties of interest as photosensitive anode materials for photochemical cells, phototransistors, photodiodes, window electrodes in liquid crystal displays, IR detectors, antireflection coatings, gas sensors and in other solar energy applications. In the present study we report on the spectroscopic, microscopic, electrical and photo-catalytic properties of CdO thin films prepared by a metal organic chemical vapor method. The degenerate semiconducting CdO thin films are useful as photocatalysts for water treatments.