0000000000587921

AUTHOR

Pablo Escribano

0000-0003-3701-0969

showing 3 related works from this author

Observable flavor violation from spontaneous lepton number breaking

2022

We propose a simple model of spontaneous lepton number violation with potentially large flavor violating decays, including the possibility that majoron emitting decays, such as $\mu \to e \, J$, saturate the experimental bounds. In this model the majoron is a singlet-doublet admixture. It generates a type-I seesaw for neutrino masses and contains also a vector-like lepton. As a by-product, the model can explain the anomalous $(g-2)_{\mu}$ in parts of its parameter space, where one expects that the branching ratio of the Higgs to muons is changed with respect to Standard Model expectations. However, the explanation of the muon $g-2$ anomaly would lead to tension with recent astrophysical bou…

Global SymmetriesHigh Energy Physics - PhenomenologyNuclear and High Energy PhysicsHigh Energy Physics - Phenomenology (hep-ph)Nuclear and particle physics. Atomic energy. RadioactivityComputer Science::Information RetrievalBeyond Standard ModelHigh Energy Physics::PhenomenologyFísicaFOS: Physical sciencesNeutrino PhysicsHigh Energy Physics::ExperimentQC770-798Journal of High Energy Physics
researchProduct

(g−2)e,μ in an extended inverse type-III seesaw model

2021

There has been a longstanding discrepancy between the experimental measurements of the electron and muon anomalous magnetic moments and their predicted values in the Standard Model. This is particularly relevant in the case of the muon $g\ensuremath{-}2$, which has attracted a remarkable interest in the community after the long-awaited announcement of the first results by the Muon $g\ensuremath{-}2$ collaboration at Fermilab, which confirms a previous measurement by the E821 experiment at Brookhaven and enlarges the statistical significance of the discrepancy, now at $4.2\ensuremath{\sigma}$. In this paper we consider an extension of the inverse type-III seesaw with a pair of vectorlike lep…

PhysicsParticle physicsMuonSeesaw molecular geometryPhysics::Instrumentation and DetectorsInverseHigh Energy Physics::ExperimentElectroweak scaleNeutrinoType (model theory)LeptonStandard ModelPhysical Review D
researchProduct

An ultraviolet completion for the Scotogenic model

2021

The Scotogenic model is an economical scenario that generates neutrino masses at the 1-loop level and includes a dark matter candidate. This is achieved by means of an ad-hoc $\mathbb{Z}_2$ symmetry, which forbids the tree-level generation of neutrino masses and stabilizes the lightest $\mathbb{Z}_2$-odd state. Neutrino masses are also suppressed by a quartic coupling, usually denoted by $\lambda_5$. While the smallness of this parameter is natural, it is not explained in the context of the Scotogenic model. We construct an ultraviolet completion of the Scotogenic model that provides a natural explanation for the smallness of the $\lambda_5$ parameter and induces the $\mathbb{Z}_2$ parity a…

PhysicsNuclear and High Energy PhysicsParticle physicsPhysicsQC1-999Scalar (mathematics)Dark matterHigh Energy Physics::PhenomenologyFOS: Physical sciencesContext (language use)ObservableParity (physics)Massless particleHigh Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)Goldstone bosonNeutrino
researchProduct