0000000000588088
AUTHOR
S Watanabe
DATING OF BRAZILIAN SHELLS THROUGH ELECTRON PARAMAGNETIC RESONANCE
Tuning the effective spin-orbit coupling in molecular semiconductors
The control of spins and spin to charge conversion in organics requires understanding the molecular spin-orbit coupling (SOC), and a means to tune its strength. However, quantifying SOC strengths indirectly through spin relaxation effects has proven diffi- cult due to competing relaxation mechanisms. Here we present a systematic study of the g-tensor shift in molecular semiconductors and link it directly to the SOC strength in a series of high mobility molecular semiconductors with strong potential for future devices. The results demonstrate a rich variability of the molecular g-shifts with the effective SOC, depending on subtle aspects of molecular composition and structure. We correlate t…
The LOFT mission concept: a status update
The Large Observatory For x-ray Timing (LOFT) is a mission concept which was proposed to ESA as M3 and M4 candidate in the framework of the Cosmic Vision 2015-2025 program. Thanks to the unprecedented combination of effective area and spectral resolution of its main instrument and the uniquely large field of view of its wide field monitor, LOFT will be able to study the behaviour of matter in extreme conditions such as the strong gravitational field in the innermost regions close to black holes and neutron stars and the supra-nuclear densities in the interiors of neutron stars. The science payload is based on a Large Area Detector (LAD, >8m2 effective area, 2-30 keV, 240 eV spectral resolut…
Research data supporting the paper "Tuning the effective spin-orbit coupling in molecular semiconductors"
We here present the data underlying the paper "Tuning the effective spin-orbit coupling in molecular semiconductors" accepted at Nature Communications on 24 February 2017. For contributions of the authors to the data and experimental details, please refer to the original paper.