0000000000588125

AUTHOR

Jurijs Sulins

showing 2 related works from this author

Misinterpretation risks of global stochastic optimisation of kinetic models revealed by multiple optimisation runs

2016

Abstract One of use cases for metabolic network optimisation of biotechnologically applied microorganisms is the in silico design of new strains with an improved distribution of metabolic fluxes. Global stochastic optimisation methods (genetic algorithms, evolutionary programing, particle swarm and others) can optimise complicated nonlinear kinetic models and are friendly for unexperienced user: they can return optimisation results with default method settings (population size, number of generations and others) and without adaptation of the model. Drawbacks of these methods (stochastic behaviour, undefined duration of optimisation, possible stagnation and no guaranty of reaching optima) cau…

Statistics and ProbabilitySucroseMathematical optimizationComputer scienceSystems biology0206 medical engineeringMetabolic network02 engineering and technologyModels BiologicalGeneral Biochemistry Genetics and Molecular Biology03 medical and health sciencesYeastsConvergence (routing)HomeostasisUse caseLimit (mathematics)030304 developmental biologyStochastic Processes0303 health sciencesGeneral Immunology and MicrobiologyApplied MathematicsParticle swarm optimizationGeneral MedicineEnzymesSaccharumConstraint (information theory)Nonlinear systemModeling and SimulationGeneral Agricultural and Biological SciencesMetabolic Networks and Pathways020602 bioinformaticsMathematical Biosciences
researchProduct

Search for a Minimal Set of Parameters by Assessing the Total Optimization Potential for a Dynamic Model of a Biochemical Network.

2017

Selecting an efficient small set of adjustable parameters to improve metabolic features of an organism is important for a reduction of implementation costs and risks of unpredicted side effects. In practice, to avoid the analysis of a huge combinatorial space for the possible sets of adjustable parameters, experience-, and intuition-based subsets of parameters are often chosen, possibly leaving some interesting counter-intuitive combinations of parameters unrevealed. The combinatorial scan of possible adjustable parameter combinations at the model optimization level is possible; however, the number of analyzed combinations is still limited. The total optimization potential (TOP) approach is…

0301 basic medicineMathematical optimizationLinear programmingApplied Mathematics0206 medical engineeringComputational Biology02 engineering and technologySaccharomyces cerevisiaeModels BiologicalSmall setBiochemical networkEnzymes03 medical and health sciences030104 developmental biologyFermentationGeneticsComputer SimulationMETABOLIC FEATURESGlycolysis020602 bioinformaticsMetabolic Networks and PathwaysBiotechnologyMathematicsIntuitionIEEE/ACM transactions on computational biology and bioinformatics
researchProduct