New anomalous trajectory in Regge theory
We show that a new Regge trajectory with \alpha_{f_1} (0) \approx 1 and slope \alpha_{f_1}'(0) \approx 0 explains the features of hadron-hadron scattering and photoproduction of the rho and phi mesons at large energy and momentum transfer. This trajectory with quantum numbers P = C = +1 and odd signature can be considered as a natural partner of the Pomeron which has even signature. The odd signature of the new exchange leads to contributions to the spin-dependent cross sections, which do not vanish at large energy. The links between the anomalous properties of this trajectory, the axial anomaly and the flavor singlet axial vector f_1 (1285) meson are discussed.
Anomalous f(1) exchange in vector meson photoproduction asymmetries
We perform an analysis of the elastic production of vector mesons with polarized photon beams at high energy in order to investigate the validity of a recently proposed dynamical mechanism based on the dominance of the f_1 trajectory at large momentum transfer. The density matrix characterizing the angular distributions of the vector meson decays is calculated within an exchange model which includes the Pomeron and the f_1. The asymmetries of these decays turn out to be very useful to disentangle the role of these exchanges since their effect depends crucially on their quantum numbers which are different. The observables analyzed are accessible with present experimental facilities.
New Anomalous Exchange in Regge Phenomenology and Hard Diffraction
A new mechanism for hard diffraction based on the anomalous $f_1$ trajectory exchange, which we identify as the odd signature partner of the Pomeron, is suggested. We calculate the contribution of the $f_1$ exchange to elastic and dissociative electromagnetic production of vector mesons and show that it gives a dominant contribution to the differential cross sections at large momentum transfers.