0000000000588451
AUTHOR
M. Vilén
High-precision electron-capture Q value measurement of 111In for electron-neutrino mass determination
A precise determination of the ground state $^{111}$In ($9/2^+$) electron capture to ground state of $^{111}$Cd ($1/2^+$) $Q$ value has been performed utilizing the double Penning trap mass spectrometer, JYFLTRAP. A value of 857.63(17) keV was obtained, which is nearly a factor of 20 more precise than the value extracted from the Atomic Mass Evaluation 2020 (AME2020). The high-precision electron-capture $Q$ value measurement along with the nuclear energy level data of 866.60(6) keV, 864.8(3) keV, 855.6(10) keV, and 853.94(7) keV for $^{111}$Cd was used to determine whether the four states are energetically allowed for a potential ultra-low $Q$-value $\beta^{}$ decay or electron-capture deca…
High-Precision Q -Value Measurement Confirms the Potential of Cs 135 for Absolute Antineutrino Mass Scale Determination
β - and γ -spectroscopy study of Pd119 and Ag119
Low-spin excitations in 89Br populated in β−decay of 89Se
Low-spin, excited states of the 89Br nucleus, populated in β− decay of 89Se have been studied for the first time. The 89Se nuclei were produced in proton-induced fission of natural thorium using the IGISOL facility and separated using a dipole magnet and the coupled JYFLTRAP Penning trap. Gamma radiation following the β− decay of 89Se was measured with an array of high-resolution germanium detectors. Levels scheme of 89Br was extended by 12 new levels and 31 new γ transitions. Spin-parity (3/2+) has been proposed for the ground state of the 89Se mother nucleus, replacing the (5/2+) assignment reported in data bases. The observed Gamow-Teller β− transition to the 1754.5-keV level indicates a…
β- and γ-spectroscopy study of 119Pd and 119Ag
Neutron-rich 119Pd nuclei were produced in fission of natural uranium, induced by 25-MeV protons. Fission fragments swiftly extracted with the Ion Guide Isotope Separation On-Line method were mass separated using a dipole magnet and a Penning trap, providing mono-isotopic samples of 119Pd. Their β− decay was measured with γγ- and βγ-spectroscopy methods using low-energy germanium detectors and a thin plastic scintillator. Two distinct nuclear-level structures were observed in 119Ag, based on the 1/2− and 7/2+ isomers reported previously. The β−-decay work was complemented by a prompt-γ study of levels in 119Ag populated in spontaneous fission of 252Cf, performed using the Gammasphere array …
High-Precision Q-Value Measurement Confirms the Potential of 135Cs for Absolute Antineutrino Mass Scale Determination
The ground-state-to-ground-state β-decay Q value of Cs135(7/2+)→Ba135(3/2+) has been directly measured for the first time. The measurement was done utilizing both the phase-imaging ion-cyclotron resonance technique and the time-of-flight ion-cyclotron resonance technique at the JYFLTRAP Penning-trap setup and yielded a mass difference of 268.66(30) keV between Cs135(7/2+) and Ba135(3/2+). With this very small uncertainty, this measurement is a factor of 3 more precise than the currently adopted Q value in the Atomic Mass Evaluation 2016. The measurement confirms that the first-forbidden unique β--decay transition Cs135(7/2+)→Ba135(11/2-) is a candidate for antineutrino mass measurements wit…
Excited states in 87Br populated in β decay of 87Se
Excited levels in 87Br, populated in β decay of 87Se, have been studied by means of γ-ray spectroscopy using an array of broad energy Ge detectors. 87Se nuclei were produced by irradiating a natural Th target with 25-MeV protons. Fission products were extracted from the target chamber using the IGISOL technique, then separated on a dipole magnet and Penning trap (JYFLTRAP) setup. The scheme of excited levels of 87Br has been significantly extended. 114 new transitions and 51 new levels were established. β feedings and log(ft) values of levels were determined. The upper limit for β feeding to the ground state of 87Br was determined to be 23(5)%. Ground state spin and parity 5/2− was confirme…
First β-decay scheme of 107Nb : New insight into the low-energy levels of 107Mo
Monoisotopic samples of 107Nb nuclei, produced in the proton-induced fission of 238U and separated using the IGISOL mass separator coupled to a Penning trap, were used to perform β- and γ-coincidence spectroscopy of 107Mo. Gamma transitions and excited levels in 107Mo were observed in β decay for the first time. Spin and parity 1/2+ for the ground state of 107Mo is proposed, to replace the previous 5/2+ assignment. The experimental β-decay half-life of 107Nb was estimated to be 0.27±0.02 s. peerReviewed
Three beta-decaying states in In and In resolved for the first time using Penning-trap techniques
Isomeric states in $^{128}$In and $^{130}$In have been studied with the JYFLTRAP Penning trap at the IGISOL facility. By employing state-of-the-art ion manipulation techniques, three different beta-decaying states in $^{128}$In and $^{130}$In have been separated and their masses measured. JYFLTRAP was also used to select the ions of interest for identification at a post-trap decay spectroscopy station. A new beta-decaying high-spin isomer feeding the 15− isomer in $^{128}$Sn has been discovered in $^{128}$In at 1797.6(20) keV. Shell-model calculations employing a CD-Bonn potential re-normalized with the perturbative G-matrix approach suggest this new isomer to be a 16+ spin-trap isomer. In …
β - and γ -spectroscopy study of Pd 119 and Ag 119
Benchmark of a multi-physics Monte Carlo simulation of an ionguide for neutron-induced fission products
AbstractTo enhance the production of medium-heavy, neutron-rich nuclei, and to facilitate measurements of independent yields of neutron-induced fission, a proton-to-neutron converter and a dedicated ion guide for neutron-induced fission have been developed for the IGISOL facility at the University of Jyväskylä. The ion guide holds the fissionable targets, and the fission products emerging from the targets are collected in helium gas and transported to the downstream experimental stations. A computer model, based on a combination of MCNPX for modeling the neutron production, the fission code GEF, and GEANT4 for the transport of the fission products, was developed. The model will be used to i…
β decay of Cd 127 and excited states in In 127
22 pags., 8 figs., 4 tabs., 1 app.