0000000000588807

AUTHOR

Aleksandrs Eļkins

showing 3 related works from this author

On a Category of Extensional Fuzzy Rough Approximation L-valued Spaces

2016

We establish extensionality of some upper and lower fuzzy rough approximation operators on an L-valued set. Taking as the ground basic properties of these operators, we introduce the concept of an (extensional) fuzzy rough approximation L-valued space. We apply fuzzy functions satisfying certain continuity-type conditions, as morphisms between such spaces, and in the result obtain a category \(\mathcal{FRA}{} \mathbf{SPA}(L)\) of fuzzy rough approximation L-valued spaces. An interpretation of fuzzy rough approximation L-valued spaces as L-fuzzy (di)topological spaces is presented and applied for constructing examples in category \(\mathcal{FRA}{} \mathbf{SPA}(L)\).

Discrete mathematicsFuzzy classificationMathematics::General Mathematics05 social sciences050301 education02 engineering and technologyTopological spaceSpace (mathematics)Fuzzy logicMorphismMathematics::Category TheoryFuzzy mathematics0202 electrical engineering electronic engineering information engineeringFuzzy numberCategory of topological spaces020201 artificial intelligence & image processing0503 educationMathematics
researchProduct

Raupjas kopas un aproksimācijas operatori

2009

Darbs sastāv no trim daļām. Pirmajā daļā tiek apskatīta klasiskā Pavlaka raupju kopu teorija, kas balstās uz ekvivalences attiecībām. Otrajā daļā tiek apskatīti vispārinātās raupju kopu teorijas izklāsti divās pieejās. Konstruktīvā pieejā aproksimācijas operatori tiek definēti ar binārās attiecības palīdzību. Aksiomātiskā vai algebriskā pieejā aproksimācijas operatori tiek definēti aksiomātiski. Tiek apskatītas aproksimāciju operatoru īpašības un to saiknes ar attiecīgo bināro attiecību. Trešajā daļā apskatīti divi piemēri, kas ilustrē raupju kopu teorijas iespējamo praktisko pielietojumu.

Matemātika
researchProduct

Variable-Range Approximate Systems Induced by Many-Valued L-Relations

2014

The concept of a many-valued L-relation is introduced and studied. Many-valued L-relations are used to induce variable-range quasi-approximate systems defined on the lines of the paper (A. Sostak, Towards the theory of approximate systems: variable-range categories. Proceedings of ICTA2011, Cambridge Univ. Publ. (2012) 265–284.) Such variable-range (quasi-)approximate systems can be realized as special families of L-fuzzy rough sets indexed by elements of a complete lattice.

Range (mathematics)Pure mathematicsComplete latticeRough setMathematicsVariable (mathematics)
researchProduct