0000000000589635
AUTHOR
Serena Di Vincenzo
Leptin and TGF-β1 Downregulate PREP1 Expression in Human Adipose-Derived Mesenchymal Stem Cells and Mature Adipocytes
International audience; Adipose tissue is widely recognized as an extremely active endocrine organ producing adipokines as leptin that bridge metabolism and the immune system. Pre-B-cell leukemia homeobox (Pbx)-regulating protein-1 (PREP1) is a ubiquitous homeodomain transcription factor involved in the adipogenic differentiation and insulin-sensitivity processes. Leptin, as pleiotropic adipokine, and TGF-β, known to be expressed by primary pre-adipocytes [adipose-derived stem cells (ASCs)] and mature differentiated adipocytes, modulate inflammatory responses. We aimed to assess for the first time if leptin and TGF-β interfere with PREP1 expression in both ASCs and mature differentiated adi…
Cigarette smoke increases BLT2 receptor functions in bronchial epithelial cells: in vitro and ex vivo evidence
Summary Leukotriene B4 (LTB4) is a neutrophil chemotactic molecule with important involvement in the inflammatory responses of chronic obstructive pulmonary disease (COPD). Airway epithelium is emerging as a regulator of innate immune responses to a variety of insults including cigarette smoke, the major risk factor for COPD. In this study we have explored whether cigarette smoke extracts (CSE) or soluble mediators present in distal lung fluid samples (mini-bronchoalveolar lavages) from smokers alter the expression of the LTB4 receptor 2 (BLT2) and peroxisome proliferator-activated receptor-α (PPAR-α) in bronchial epithelial cells. We also evaluated the effects of CSE on the expression of i…
Development of a nanostructured sensor for monitoring oxidative stress in living cells
Oxidative burden is elevated in the lung of COPD patients and is associated with aging and chronic inflammation. When overcoming physiological levels, reactive oxygen species (ROS) cause cell damage and sustain inflammation. Both lung epithelium and alveolar macrophages contribute to ROS generation. Currently, ROS generation is measured using fluorescent probes and colorimetric/fluorimetric assays. We present an amperometric nanostructured sensor for real-time detection of hydrogen peroxide (H2O2) released by living cells. The H2O2 sensing performance was evaluated through the current vs time response of platinum rod at a working potential of −0.45 V vs saturated calomel electrode acting as…
MECCANISMI DI INVECCHIAMENTO DELLE CELLULE EPITELIALI DELLE VIE AEREE
Multiple in vitro and in vivo regulatory effects of budesonide in CD4+ T lymphocyte subpopulations of allergic asthmatics.
Abstract BACKGROUND: Increased activation and increased survival of T lymphocytes characterise bronchial asthma. OBJECTIVES: In this study the effect of budesonide on T cell survival, on inducible co-stimulator T cells (ICOS), on Foxp3 and on IL-10 molecules in T lymphocyte sub-populations was assessed. METHODS: Cell survival (by annexin V binding) and ICOS in total lymphocytes, in CD4+/CD25+ and in CD4+/CD25- and Foxp3 and IL-10 in CD4+/CD25+ and in CD4+/CD25-cells was evaluated, by cytofluorimetric analysis, in mild intermittent asthmatics (n = 19) and in controls (n = 15). Allergen induced T lymphocyte proliferation and the in vivo effects of budesonide in mild persistent asthmatics (n =…
Salmeterol Xinafoate (SX) loaded into mucoadhesive solid lipid microparticles for COPD treatment
Chronic obstructive pulmonary disease (COPD) is one of the main health problems worldwide. It is characterised by chronic inflammation in the lungs that leads to progressive, chronic, largely irreversible airflow obstruction. The use of long-acting β agonists remain today the frontline treatment for COPD with the aim of minimizing side effects and enhancing therapeutic usefulness. To this purpose, in this paper, mucoadhesive solid lipid microparticles (SLMs) containing a long-acting β-2 agonist, Salmeterol Xinafoate (SX) were prepared, characterised (size, z-potential, aerodynamic diameter, turbidimetric evaluations, drug loading and entrapping efficiency) and tested in a model of bronchial…
Electrochemical Quantification of H2O2 Released by Airway Cells Growing in Different Culture Media
Quantification of oxidative stress is a challenging task that can help in monitoring chronic inflammatory respiratory airway diseases. Different studies can be found in the literature regarding the development of electrochemical sensors for H2O2 in cell culture medium to quantify oxidative stress. However, there are very limited data regarding the impact of the cell culture medium on the electrochemical quantification of H2O2. In this work, we studied the effect of different media (RPMI, MEM, DMEM, Ham’s F12 and BEGM/DMEM) on the electrochemical quantification of H2O2. The used electrode is based on reduced graphene oxide (rGO) and gold nanoparticles (AuNPs) and was obtained by co-electrode…
Oxidative stress and innate immunity responses in cigarette smoke stimulated nasal epithelial cells
Cigarette smoke extracts (CSE) may play a significant role in diseases of the upper airway including chronic rhinosinusitis. Even short term exposure of cigarette smoke has adverse effects on mitochondrial functions and redox homeostasis in tissues which may progress to further complications associated with chronic smoking. Cigarette smoke alters toll-like receptor 4 (TLR4) expression and activation in bronchial epithelial cells. Carbocysteine is an anti-oxidant and mucolytic agent. The effects of carbocysteine on CSE induced oxidative stress and on associated innate immune and inflammatory responses in nasal epithelial cells are largely unknown. The present study was aimed to assess in CSE…
Resolvin D1 and miR‐146a are independent distinctive parameters in children with moderate and severe asthma
To date, a large number of mediators and biomarkers have been detected in childhood asthma, with a potential role in monitoring the disease course. Lung function evaluation through spirometry, forced oscillation technique and multiple breath washout proved its role in asthma monitoring, especially for investigating small airway impairment in children with more severe symptoms. Recently, novel specialized pro-resolving mediators, such as resolvins and lipoxins, have been recognized as crucial in promoting the resolution of lung inflammation. Increasing evidence suggests that miRNAs are crucially entailed in asthma. Partial least squares discriminant analysis (plsDA) is a modern technique for…
Electrochemical sensor for evaluating oxidative stress in airway epithelial cells
Cigarette smoke exposure induces oxidative stress within the airways. Increased oxidative burden contributes to the pathogenesis of chronic lung disorders and is associated with aging and chronic inflammation. Airway epithelial cells highly contribute to Reactive Oxygen Species (ROS) generation within injured and inflamed lung tissues. Among ROS, hydrogen peroxide (H2O2) can be monitored in the extracellular space. Herein, we present an amperometric/voltammetric sensor based on gold nanoparticles and graphene oxide able to detect H2O2 with good sensitivity and selectivity. Using this sensor, H2O2 release was measured in conditioned medium from primary bronchial epithelial cells (PBEC), bron…
Carbocysteine reverses the effects of cigarette smoke and improves the effects of beclomethasone on the histone deacetylases in bronchial epithelial cells
Cigarette smoke exposure, increasing oxidative stress, may negatively affect histone deacetylase expression/activity. Histone deacetylase expression/activity and in particular HDAC2, HDAC3, and SIRT-1 may control inflammation, cell senescence and responses to corticosteroids. The effects of carbocysteine and of beclomethasone on the histone deacetylase expression/activity in human bronchial epithelial cells stimulated with cigarette smoke extracts (CSE) are largely unknown. This study was aimed to explore whether carbocysteine and beclomethasone, in a bronchial epithelial cell line (16-HBE) exposed to CSE, were able to modulate the expression/activity of HDAC2, HDAC3, and of SIRT-1. Methods…
Dual anti-oxidant and anti-inflammatory actions of the electrophilic cyclooxygenase-2-derived 17-oxo-DHA in lipopolysaccharide- and cigarette smoke-induced inflammation.
Abstract Background 17-Oxo-DHA is an endogenous electrophilic derivative of the omega-3 fatty acid docosahexaenoic acid (DHA) which is generated in activated macrophages by the action of cyclooxygenase-2. Methods The ability of 17-oxo-DHA to control inflammation and oxidative stress was tested in human macrophages (THP-1) and bronchial epithelial cell line (16HBE) stimulated with cigarette smoke extract (CSE) and lipopolysaccharide (LPS). All data were further confirmed using primary bronchial epithelial cells, alveolar macrophages and peripheral blood mononuclear cells. Results 17-Oxo-DHA was a strong inducer of the anti-oxidant response promoting Nrf2 nuclear accumulation, leading to the …
Effects in cigarette smoke stimulated bronchial epithelial cells of a corticosteroid entrapped into nanostructured lipid carriers
Background Nanomedicine studies have showed a great potential for drug delivery into the lung. In this manuscript nanostructured lipid carriers (NLC) containing Fluticasone propionate (FP) were prepared and their biocompatibility and effects in a human bronchial epithelial cell line (16-HBE) stimulated with cigarette smoke extracts (CSE) were tested. Results Biocompatibility studies showed that the NLC did not induce cell necrosis or apoptosis. Moreover, it was confirmed that CSE increased intracellular ROS production and TLR4 expression in bronchial epithelial cells and that FP-loaded NLC were more effective than free drug in modulating these processes. Finally, the nanoparticles increased…
Carbocysteine regulates innate immune responses and senescence processes in cigarette smoke stimulated bronchial epithelial cells
Cigarette smoke represents the major risk factor for chronic obstructive pulmonary disease (COPD). Cigarette smoke extracts (CSE) alter TLR4 expression and activation in bronchial epithelial cells. Carbocysteine, an anti-oxidant and mucolytic agent, is effective in reducing the severity and the rate of exacerbations in COPD patients. The effects of carbocysteine on TLR4 expression and on the TLR4 activation downstream events are largely unknown. This study was aimed to explore whether carbocysteine, in a human bronchial epithelial cell line (16-HBE), counteracted some pro-inflammatory CSE-mediated effects. In particular, TLR4 expression, LPS binding, p21 (a senescence marker), IL-8 mRNA and…
Comparative cytoprotective effects of carbocysteine and fluticasone propionate in cigarette smoke extract-stimulated bronchial epithelial cells
Cigarette smoke extracts (CSE) induce oxidative stress, an important feature in chronic obstructive pulmonary disease (COPD), and oxidative stress contributes to the poor clinical efficacy of corticosteroids in COPD patients. Carbocysteine, an antioxidant and mucolytic agent, is effec- tive in reducing the severity and the rate of exacerbations in COPD patients. The effects of carbocysteine on CSE-induced oxidative stress in bronchial epithelial cells as well as the comparison of these antioxidant effects of carbocysteine with those of fluticasone propionate are unknown. The present study was aimed to assess the effects of carbocysteine (10−4 M) in cell survival and intracellular reactive o…
Wearable sensor for real-time monitoring of oxidative stress
Exposure to cigarette smoke extract and lipopolysaccharide modifies cytoskeleton organization in bronchial epithelial cells
The integrity of the respiratory epithelium is crucial for airway homeostasis. Tobacco smoke exposure and recurrent infections of the airways play a crucial role in the progression and in the decline of the respiratory function in chronic obstructive pulmonary disease (COPD). The aim of this study was to detect differentially expressed proteins in a bronchial epithelial cell line (16-HBE) stimulated with cigarette smoke extract (CSE) and lipopolysaccharide (LPS), a constituent of gram-negative bacteria, alone and/or in combination, by using two-dimensional electrophoresis (2DE) analysis coupled with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Western blot a…
Electrochemical Synthesis of Zinc Oxide Nanostructures on Flexible Substrate and Application as an Electrochemical Immunoglobulin-G Immunosensor
Immunoglobulin G (IgG), a type of antibody, represents approximately 75% of serum antibodies in humans, and is the most common type of antibody found in blood circulation. Consequently, the development of simple, fast and reliable systems for IgG detection, which can be achieved using electrochemical sandwich-type immunosensors, is of considerable interest. In this study we have developed an immunosensor for human (H)-IgG using an inexpensive and very simple fabrication method based on ZnO nanorods (NRs) obtained through the electrodeposition of ZnO. The ZnO NRs were treated by electrodepositing a layer of reduced graphene oxide (rGO) to ensure an easy immobilization of the antibodies. On I…