0000000000589853
AUTHOR
T. Magnin
Mechanism of brittle fracture in a ductile 316 alloy during stress corrosion
Abstract The ductile f.c.c. 316 alloy is shown to exhibit brittle transgranular (and intergranular) stress corrosion cracking in a 153°C MgCl2 solution at free corrosion potential. Tests on smooth and pre-cracked specimens are performed to identify the mechanisms of fracture. Transgranular cracking is related to both a discontinuous microcleavage mainly on {100} planes and a microshearing on {111} planes. A new physical modelization is proposed to explain the brittle transgranular cracking. It is based on the influence of the localized anodic dissolution on the enhancement of the plasticity at the crack tip. The formation of dislocation pile-ups and the conditions of restricted slip induce …
Localized hydrogen cracking in the austenitic phase of a duplex stainless steel
The aim of this study is to investigate the role of hydrogen on the mechanical behavior of an austenitic phase, in the particular situation of duplex stainless steels. In these duplex alloys, in presence of hydrogen, the ferritic phase is embrittled by hydrogen and the resistance to cracking is mainly related to the behavior of the austenitic phase. Thus, a discussion of the role of hydrogen at the crack tip of a duplex alloy (as function of the microstructure) has been proposed by T. Perng and C.J. Altester after experiments conducted in gaseous environment. A similar experimental approach has been followed in this study; slow strain rate tests (SSRT) have been performed on duplex stainles…