0000000000589855
AUTHOR
Xiaohui Duan
Millimeter-Scale and Billion-Atom Reactive Force Field Simulation on Sunway Taihulight
Large-scale molecular dynamics (MD) simulations on supercomputers play an increasingly important role in many research areas. With the capability of simulating charge equilibration (QEq), bonds and so on, Reactive force field (ReaxFF) enables the precise simulation of chemical reactions. Compared to the first principle molecular dynamics (FPMD), ReaxFF has far lower requirements on computational resources so that it can achieve higher efficiencies for large-scale simulations. In this article, we present our efforts on scaling ReaxFF on the Sunway TaihuLight Supercomputer (TaihuLight). We have carefully redesigned the force analysis and neighbor list building steps. By applying fine-grained …
FMapper: Scalable read mapper based on succinct hash index on SunWay TaihuLight
Abstract One of the most important application in bioinformatics is read mapping. With the rapidly increasing number of reads produced by next-generation sequencing (NGS) technology, there is a need for fast and efficient high-throughput read mappers. In this paper, we present FMapper – a highly scalable read mapper on the TaihuLight supercomputer optimized for its fourth-generation ShenWei many-core architecture (SW26010). In order to fully exploit the computational power of the SW26010, we employ dynamic scheduling of tasks, asynchronous I/O and data transfers and implement a vectorized version of the banded Myers algorithm tailored to the 256 bit vector registers of the SW26010. Our perf…
Neighbor-list-free molecular dynamics on sunway TaihuLight supercomputer
Molecular dynamics (MD) simulations are playing an increasingly important role in many research areas. Pair-wise potentials are widely used in MD simulations of bio-molecules, polymers, and nano-scale materials. Due to a low compute-to-memory-access ratio, their calculation is often bounded by memory transfer speeds. Sunway TaihuLight is one of the fastest supercomputers featuring a custom SW26010 many-core processor. Since the SW26010 has some critical limitations regarding main memory bandwidth and scratchpad memory size, it is considered as a good platform to investigate the optimization of pair-wise potentials especially in terms of data reusage. MD algorithms often use a neighbor-list …
SWMapper: Scalable Read Mapper on SunWay TaihuLight
With the rapid development of next-generation sequencing (NGS) technologies, high throughput sequencing platforms continuously produce large amounts of short read DNA data at low cost. Read mapping is a performance-critical task, being one of the first stages required for many different types of NGS analysis pipelines. We present SWMapper — a scalable and efficient read mapper for the Sunway TaihuLight supercomputer. A number of optimization techniques are proposed to achieve high performance on its heterogeneous architecture which are centered around a memory-efficient succinct hash index data structure including seed filtration, duplicate removal, dynamic scheduling, asynchronous data tra…
S-Aligner: Ultrascalable Read Mapping on Sunway Taihu Light
The availability and amount of sequenced genomes have been rapidly growing in recent years because of the adoption of next-generation sequencing (NGS) technologies that enable high-throughput short-read generation at highly competitive cost. Since this trend is expected to continue in the foreseeable future, the design and implementation of efficient and scalable NGS bioinformatics algorithms are important to research and industrial applications. In this paper, we introduce S-Aligner–a highly scalable read mapper designed for the Sunway Taihu Light supercomputer and its fourth-generationShenWei many-core architecture (SW26010). S-Aligner employs a combination of optimization techniques to o…
Optimization of Reactive Force Field Simulation: Refactor, Parallelization, and Vectorization for Interactions
Molecular dynamics (MD) simulations are playing an increasingly important role in many areas ranging from chemical materials to biological molecules. With the continuing development of MD models, the potentials are getting larger and more complex. In this article, we focus on the reactive force field (ReaxFF) potential from LAMMPS to optimize the computation of interactions. We present our efforts on refactoring for neighbor list building, bond order computation, as well as valence angles and torsion angles computation. After redesigning these kernels, we develop a vectorized implementation for non-bonded interactions, which is nearly $100 \times$ 100 × faster than the management processing…
Cell-List based Molecular Dynamics on Many-Core Processors: A Case Study on Sunway TaihuLight Supercomputer
Molecular dynamics (MD) simulations are playing an increasingly important role in several research areas. The most frequently used potentials in MD simulations are pair-wise potentials. Due to the memory wall, computing pair-wise potentials on many-core processors are usually memory bounded. In this paper, we take the SW26010 processor as an exemplary platform to explore the possibility to break the memory bottleneck by improving data reusage via cell-list-based methods. We use cell-lists instead of neighbor-lists in the potential computation, and apply a number of novel optimization methods. Theses methods include: an adaptive replica arrangement strategy, a parameter profile data structur…