0000000000589889

AUTHOR

Abdolnaser Zakery

0000-0002-9612-2701

showing 3 related works from this author

Generation of accelerating beams using nano-scale metallic circular gratings

2014

Spatially accelerating beams that are solutions to the Maxwell equations may propagate along incomplete circular trajectories, after which diffraction broadening takes over and the beams spread out. In this paper we report on numerical simulations that show the conversion of a high-numerical-aperture focused beam into a nonparaxial shape-preserving accelerating beam having a beam-width near the diffraction limit. Beam shaping is induced by a diffractive optical element that consists of a non-planar sub-wavelength grating enabling a Bessel signature.

PhysicsDiffractionbusiness.industryPhysics::OpticsGratingDiffraction efficiencysymbols.namesakeOpticsMaxwell's equationsLimit (music)symbolsPhysics::Accelerator PhysicsbusinessNanoscopic scaleBeam (structure)Bessel function2014 16th International Conference on Transparent Optical Networks (ICTON)
researchProduct

Accelerating wide-angle converging waves in the near field

2014

We show that a wide-angle converging wave may be transformed into a shape-preserving accelerating beam having a beam-width near the diffraction limit. For that purpose, we followed a strategy that is particularly conceived for the acceleration of nonparaxial laser beams, in contrast to the well-known method by Siviloglou et al (2007 Phys. Rev. Lett. 99 213901). The concept of optical near-field shaping is applied to the design of non-flat ultra-narrow diffractive optical elements. The engineered curvilinear caustic can be set up by the beam emerging from a dynamic assembly of elementary gratings, the latter enabling to modify the effective refractive index of the metamaterial as it is arran…

DiffractionPhysicsCurvilinear coordinatesbusiness.industryPhysics::OpticsMetamaterialNear and far fieldInvariant optical fieldsAtomic and Molecular Physics and OpticsElectronic Optical and Magnetic MaterialsAccelerationArtificially engineered materialsOpticsDiffraction theoryBroadbandCaustic (optics)businessBeam (structure)ÓpticaJournal of Optics
researchProduct

Highly localized accelerating beams using nano-scale metallic gratings

2015

Spatially accelerating beams are non-diffracting beams whose intensity is localized along curvilinear trajectories, also incomplete circular trajectories, before diffraction broadening governs their propagation. In this paper we report on numerical simulations showing the conversion of a high-numerical-aperture focused beam into a nonparaxial shape-preserving accelerating beam having a beam-width near the diffraction limit. Beam shaping is induced near the focal region by a diffractive optical element that consists of a non-planar subwavelength grating enabling a Bessel signature. This research was funded by the Spanish Ministry of Economy and Competitiveness under the project TEC2011-29120…

PhysicsDiffractionCurvilinear coordinatesWave propagationWave propagationbusiness.industryPhysics::OpticsGratingInvariant optical fieldsAtomic and Molecular Physics and OpticsElectronic Optical and Magnetic Materialssymbols.namesakeOpticsDiffraction theorysymbolsPhysics::Accelerator PhysicsElectrical and Electronic EngineeringPhysical and Theoretical ChemistrybusinessNanoscopic scaleIntensity (heat transfer)Beam (structure)Bessel functionÓpticaOptics Communications
researchProduct