0000000000590077

AUTHOR

Sven Dorosz

showing 2 related works from this author

Description of hard-sphere crystals and crystal-fluid interfaces: a comparison between density functional approaches and a phase-field crystal model.

2012

In materials science the phase field crystal approach has become popular to model crystallization processes. Phase field crystal models are in essence Landau-Ginzburg-type models, which should be derivable from the underlying microscopic description of the system in question. We present a study on classical density functional theory in three stages of approximation leading to a specific phase field crystal model, and we discuss the limits of applicability of the models that result from these approximations. As a test system we have chosen the three--dimensional suspension of monodisperse hard spheres. The levels of density functional theory that we discuss are fundamental measure theory, a …

: Physics [G04] [Physical chemical mathematical & earth Sciences]FOS: Physical sciencesHard spheresCondensed Matter - Soft Condensed Matterlaw.inventionCrystal: Physique [G04] [Physique chimie mathématiques & sciences de la terre]lawPhase (matter)Crystal modelVacancy defectSoft Condensed Matter (cond-mat.soft)Density functional theoryStatistical physicsCrystallizationFree parameterMathematicsPhysical review. E, Statistical, nonlinear, and soft matter physics
researchProduct

Crystallization in suspensions of hard spheres: a Monte Carlo and molecular dynamics simulation study

2011

The crystallization of a metastable melt is one of the most important non-equilibrium phenomena in condensed matter physics, and hard sphere colloidal model systems have been used for several decades to investigate this process by experimental observation and computer simulation. Nevertheless, there is still an unexplained discrepancy between the simulation data and experimental nucleation rate densities. In this paper we examine the nucleation process in hard spheres using molecular dynamics and Monte Carlo simulation. We show that the crystallization process is mediated by precursors of low orientational bond-order and that our simulation data fairly match the experimental data sets.

Materials scienceMonte Carlo method: Physics [G04] [Physical chemical mathematical & earth Sciences]NucleationFOS: Physical sciencesMolecular Dynamics SimulationCondensed Matter - Soft Condensed Matterlaw.inventionMolecular dynamicsSuspensionslawMetastabilityComputer SimulationGeneral Materials ScienceParticle SizeCrystallizationCondensed Matter - Statistical MechanicsStatistical Mechanics (cond-mat.stat-mech)Hard spheresCondensed Matter Physics: Physique [G04] [Physique chimie mathématiques & sciences de la terre]Chemical physicsScientific methodSoft Condensed Matter (cond-mat.soft)ThermodynamicsSPHERESCrystallizationMonte Carlo MethodJournal of Physics: Condensed Matter
researchProduct