Flexible drift-compensation system for precise 3D force mapping in severe drift environments
The acquisition of dense 3D data sets is of great importance, but also a challenge for scanning probe microscopy (SPM). Thermal drift often induces severe distortions in the data, which usually constrains the acquisition of dense data sets to experiments under ultra-high vacuum and low-temperature conditions. Atom tracking is an elegant approach to compensate for thermal drift and to position the microscope tip with highest precision. Here, we present a flexible drift compensation system which can easily be connected to existing SPM hardware. Furthermore, we describe a 3D data acquisition and position correction protocol, which is capable of handling large and non-linear drift as typically …