0000000000590440

AUTHOR

Antti Hyttinen

showing 2 related works from this author

Do-search -- a tool for causal inference and study design with multiple data sources

2020

Epidemiologic evidence is based on multiple data sources including clinical trials, cohort studies, surveys, registries, and expert opinions. Merging information from different sources opens up new possibilities for the estimation of causal effects. We show how causal effects can be identified and estimated by combining experiments and observations in real and realistic scenarios. As a new tool, we present do-search, a recently developed algorithmic approach that can determine the identifiability of a causal effect. The approach is based on do-calculus, and it can utilize data with nontrivial missing data and selection bias mechanisms. When the effect is identifiable, do-search outputs an i…

FOS: Computer and information sciencesEpidemiologyComputer sciencemedia_common.quotation_subjectInformation Storage and RetrievalMachine learningcomputer.software_genre01 natural sciencesStatistics - ApplicationsMethodology (stat.ME)010104 statistics & probability03 medical and health sciences0302 clinical medicineHumansApplications (stat.AP)030212 general & internal medicine0101 mathematicsSalt intakeStatistics - Methodologymedia_commonSelection biasbusiness.industryNutrition SurveysMissing dataCausalityCausalityResearch DesignCausal inferenceMeta-analysisSurvey data collectionIdentifiabilityArtificial intelligencebusinesscomputer
researchProduct

Causal Effect Identification from Multiple Incomplete Data Sources: A General Search-Based Approach

2021

Causal effect identification considers whether an interventional probability distribution can be uniquely determined without parametric assumptions from measured source distributions and structural knowledge on the generating system. While complete graphical criteria and procedures exist for many identification problems, there are still challenging but important extensions that have not been considered in the literature. To tackle these new settings, we present a search algorithm directly over the rules of do-calculus. Due to generality of do-calculus, the search is capable of taking more advanced data-generating mechanisms into account along with an arbitrary type of both observational and…

FOS: Computer and information sciencesStatistics and ProbabilityComputer Science - Machine LearningcausalityComputer Science - Artificial IntelligenceHeuristic (computer science)Computer scienceeducationMachine Learning (stat.ML)transportabilitycomputer.software_genre01 natural sciencesMachine Learning (cs.LG)R-kielimissing dataQA76.75-76.765; QA273-280010104 statistics & probabilitydo-calculuscausality; do-calculus; selection bias; transportability; missing data; case-control design; meta-analysisStatistics - Machine LearningSearch algorithmselection bias0101 mathematicsParametric statisticspäättelymeta-analyysicase-control designhakualgoritmit113 Computer and information sciencesMissing datameta-analysisIdentification (information)Artificial Intelligence (cs.AI)Causal inferencekausaliteettiIdentifiabilityProbability distributionData miningStatistics Probability and UncertaintycomputerSoftwareJournal of Statistical Software
researchProduct