0000000000590440

AUTHOR

Antti Hyttinen

Do-search -- a tool for causal inference and study design with multiple data sources

Epidemiologic evidence is based on multiple data sources including clinical trials, cohort studies, surveys, registries, and expert opinions. Merging information from different sources opens up new possibilities for the estimation of causal effects. We show how causal effects can be identified and estimated by combining experiments and observations in real and realistic scenarios. As a new tool, we present do-search, a recently developed algorithmic approach that can determine the identifiability of a causal effect. The approach is based on do-calculus, and it can utilize data with nontrivial missing data and selection bias mechanisms. When the effect is identifiable, do-search outputs an i…

research product

Causal Effect Identification from Multiple Incomplete Data Sources: A General Search-Based Approach

Causal effect identification considers whether an interventional probability distribution can be uniquely determined without parametric assumptions from measured source distributions and structural knowledge on the generating system. While complete graphical criteria and procedures exist for many identification problems, there are still challenging but important extensions that have not been considered in the literature. To tackle these new settings, we present a search algorithm directly over the rules of do-calculus. Due to generality of do-calculus, the search is capable of taking more advanced data-generating mechanisms into account along with an arbitrary type of both observational and…

research product