6533b825fe1ef96bd1283274

RESEARCH PRODUCT

Do-search -- a tool for causal inference and study design with multiple data sources

Juha KarvanenAntti HyttinenSanttu Tikka

subject

FOS: Computer and information sciencesEpidemiologyComputer sciencemedia_common.quotation_subjectInformation Storage and RetrievalMachine learningcomputer.software_genre01 natural sciencesStatistics - ApplicationsMethodology (stat.ME)010104 statistics & probability03 medical and health sciences0302 clinical medicineHumansApplications (stat.AP)030212 general & internal medicine0101 mathematicsSalt intakeStatistics - Methodologymedia_commonSelection biasbusiness.industryNutrition SurveysMissing dataCausalityCausalityResearch DesignCausal inferenceMeta-analysisSurvey data collectionIdentifiabilityArtificial intelligencebusinesscomputer

description

Epidemiologic evidence is based on multiple data sources including clinical trials, cohort studies, surveys, registries, and expert opinions. Merging information from different sources opens up new possibilities for the estimation of causal effects. We show how causal effects can be identified and estimated by combining experiments and observations in real and realistic scenarios. As a new tool, we present do-search, a recently developed algorithmic approach that can determine the identifiability of a causal effect. The approach is based on do-calculus, and it can utilize data with nontrivial missing data and selection bias mechanisms. When the effect is identifiable, do-search outputs an identifying formula on which numerical estimation can be based. When the effect is not identifiable, we can use do-search to recognize additional data sources and assumptions that would make the effect identifiable. Throughout the article, we consider the effect of salt-adding behavior on blood pressure mediated by the salt intake as an example. The identifiability of this effect is resolved in various scenarios with different assumptions on confounding. There are scenarios where the causal effect is identifiable from a chain of experiments but not from survey data, as well as scenarios where the opposite is true. As an illustration, we use survey data from the National Health and Nutrition Examination Survey 2013-2016 and the results from a meta-analysis of randomized controlled trials and estimate the reduction in average systolic blood pressure under an intervention where the use of table salt is discontinued.

https://dx.doi.org/10.48550/arxiv.2007.08189