Critical behaviour in one dimension: unconventional pairing, phase separation, BEC-BCS crossover and magnetic Lifshitz transition
We study the superconducting properties of population-imbalanced ultracold Fermi mixtures in one-dimensional (1D) optical lattices that can be effectively described by the spin-imbalanced attractive Hubbard model (AHM) in the presence of a Zeeman magnetic field. We use the mean-field theory approach to obtain the ground state phase diagrams including some unconventional superconducting phases such as the Fulde--Ferrell--Larkin--Ovchinnikov (FFLO) phase, and the $\eta$ phase (an extremal case of the FFLO phase), both for the case of a fixed chemical potential and for a fixed number of particles. It allows to determine optimal regimes for the FFLO phase as well as $\eta$-pairing stability. We…