0000000000590993
AUTHOR
H. Gökalp Demirci
Probabilistic verifiers for asymmetric debates
We examine the power of silent constant-space probabilistic verifiers that watch asymmetric debates (where one side is unable to see some of the messages of the other) between two deterministic provers, and try to determine who is right. We prove that probabilistic verifiers outperform their deterministic counterparts as asymmetric debate checkers. It is shown that the membership problem for every language in NSPACE(s(n)) has a 2^{s(n)}-time debate where one prover is completely blind to the other one, for polynomially bounded space constructible s(n). When partial information is allowed to be seen by the handicapped prover, the class of languages debatable in 2^{s(n)} time contains TIME(2^…
Debates with Small Transparent Quantum Verifiers
We study a model where two opposing provers debate over the membership status of a given string in a language, trying to convince a weak verifier whose coins are visible to all. We show that the incorporation of just two qubits to an otherwise classical constant-space verifier raises the class of debatable languages from at most NP to the collection of all Turing-decidable languages (recursive languages). When the verifier is further constrained to make the correct decision with probability 1, the corresponding class goes up from the regular languages up to at least E.