0000000000591092

AUTHOR

Jörg Selzer

Glucosylation of Rho proteins by Clostridium difficile toxin B.

TOXIN A and B, the major virulence factors of Clostridium difficile, are the causative agents of antibiotic-associated pseudomembran-ous colitis. In cultured cell lines their potent cytotoxicity results from their ability to induce disaggregation of the microfilament cytoskeleton1,2. Toxin B acts on the low-molecular-mass GTPase Rho A3,4, which is involved in the regulation of the actin cytoskeleton. We report here that toxin B catalyses the incorporation of up to one mole of glucose per mole of RhoA at the amino acid thre-onine at position 37. The modification was identified and localized by tandem electrospray mass spectrometry. UDP-glucose selectively serves as cosubstrate for the monogl…

research product

The Enterotoxin from Clostridium difficile (ToxA) Monoglucosylates the Rho Proteins

The enterotoxin from Clostridium difficile (ToxA) is one of the causative agents of the antibiotic-associated pseudomembranous colitis. In cultured monolayer cells ToxA exhibits cytotoxic activity to induce disassembly of the actin cytoskeleton, which is accompanied by morphological changes. ToxA-induced depolymerization of actin filaments is correlated with a decrease in the ADP-ribosylation of the low molecular mass GTP-binding Rho proteins (Just, I., Selzer, J., von Eichel-Streiber, C., and Aktories, K. (1995) J. Clin. Invest. 95, 1026-1031). Here we report on the identification of the ToxA-induced modification of Rho. Applying electrospray mass spectrometry, the mass of the modification…

research product