0000000000591411

AUTHOR

A.d. Dolgov

Screening of long-range leptonic forces by cosmic background neutrinos.

The absence of dispersion effects of the SN~1987A neutrino pulse has been used to constrain novel long-range forces between neutrinos and galactic baryonic or non-baryonic matter. If these forces are mediated by vector bosons, screening effects by the cosmic neutrino background invalidate the SN~1987A limits and other related arguments.

research product

Primordial Nucleosynthesis, Majorons and Heavy Tau Neutrinos

We determine the restrictions imposed by primordial nucleosynthesis upon a heavy tau neutrino, in the presence of nu-tau annihilations into Majorons, as expected in a wide class of particle physics models of neutrino mass. We determine the equivalent number of light neutrino species $N_{eq}$ as a function of nu-tau mass and the nu-tau-Majoron coupling $g$. We show that for theoretically plausible $g$ values $\gsim 10^{-4}$ present nucleosynthesis observations can not rule out nu-tau masses in the MeV range. Moreover, these models give $N_{eq} \leq 3$ in the nu-tau mass region 1-10 MeV, for very reasonable values of $g \geq 3 \times 10^{-4}$. The evasion of the cosmological limits brings new…

research product

An improved cosmological bound on the tau-neutrino mass

We consider the influence of non-equilibrium electronic neutrinos (and anti-neutrinos) on the neutron-to-proton ratio. These neutrinos would come from massive $\nu_\tau$ annihilations $\bar \nu_\tau \nu_\tau \rightarrow \bar \nu_e \nu_e$. For sufficiently large $\nu_\tau$ masses this new effect would strongly enhance the (n/p)-ratio, leading to a very stringent bound on the $\nu_\tau$ mass, even adopting a rather weak upper bound on the effective number on neutrino species during nucleosynthesis.

research product