0000000000591440
AUTHOR
R. De Vita
The data acquisition system for the ANTARES neutrino telescope
The ANTARES neutrino telescope is being constructed in the Mediterranean Sea. It consists of a large three-dimensional array of photo-multiplier tubes. The data acquisition system of the detector takes care of the digitisation of the photo-multiplier tube signals, data transport, data filtering, and data storage. The detector is operated using a control program interfaced with all elements. The design and the implementation of the data acquisition system are described.
Precise Measurement of the Neutron Magnetic Form FactorGMnin the Few-GeV2Region
The neutron elastic magnetic form factor was extracted from quasielastic electron scattering on deuterium over the range Q;{2}=1.0-4.8 GeV2 with the CLAS detector at Jefferson Lab. High precision was achieved with a ratio technique and a simultaneous in situ calibration of the neutron detection efficiency. Neutrons were detected with electromagnetic calorimeters and time-of-flight scintillators at two beam energies. The dipole parametrization gives a good description of the data.
The ANTARES optical module
The ANTARES collaboration is building a deep sea neutrino telescope in the Mediterranean Sea. This detector will cover a sensitive area of typically 0.1 km-squared and will be equipped with about 1000 optical modules. Each of these optical modules consists of a large area photomultiplier and its associated electronics housed in a pressure resistant glass sphere. The design of the ANTARES optical module, which is a key element of the detector, has been finalized following extensive R & D studies and is reviewed here in detail.
The ANTARES Optical Beacon System
ANTARES is a neutrino telescope being deployed in the Mediterranean Sea. It consists of a three dimensional array of photomultiplier tubes that can detect the Cherenkov light induced by charged particles produced in the interactions of neutrinos with the surrounding medium. High angular resolution can be achieved, in particular when a muon is produced, provided that the Cherenkov photons are detected with sufficient timing precision. Considerations of the intrinsic time uncertainties stemming from the transit time spread in the photomultiplier tubes and the mechanism of transmission of light in sea water lead to the conclusion that a relative time accuracy of the order of 0.5 ns is desirabl…
First results of the Instrumentation Line for the deep-sea ANTARES neutrino telescope
In 2005, the ANTARES Collaboration deployed and operated at a depth of 2500 m a so-called Mini Instrumentation Line equipped with Optical Modules (MILOM) at the ANTARES site. The various data acquired during the continuous operation from April to December 2005 of the MILOM confirm the satisfactory performance of the Optical Modules, their front-end electronics and readout system, as well as the calibration devices of the detector. The in-situ measurement of the Optical Module time response yields a resolution better than 0.5 ns. The performance of the acoustic positioning system, which enables the spatial reconstruction of the ANTARES detector with a precision of about 10 cm, is verified. T…
Study of Large Hemispherical Photomultiplier Tubes for the ANTARES Neutrino Telescope
The ANTARES neutrino telescope, to be immersed depth in the Mediterranean Sea, will consist of a 3 dimensional matrix of 900 large area photomultiplier tubes housed in pressure resistant glass spheres. The selection of the optimal photomultiplier was a critical step for the project and required an intensive phase of tests and developments carried out in close collaboration with the main manufacturers worldwide. This paper provides an overview of the tests performed by the collaboration and describes in detail the features of the PMT chosen for ANTARES.
Dark Sectors and New, Light, Weakly-Coupled Particles
Dark sectors, consisting of new, light, weakly-coupled particles that do not interact with the known strong, weak, or electromagnetic forces, are a particularly compelling possibility for new physics. Nature may contain numerous dark sectors, each with their own beautiful structure, distinct particles, and forces. This review summarizes the physics motivation for dark sectors and the exciting opportunities for experimental exploration. It is the summary of the Intensity Frontier subgroup "New, Light, Weakly-coupled Particles" of the Community Summer Study 2013 (Snowmass). We discuss axions, which solve the strong CP problem and are an excellent dark matter candidate, and their generalizatio…