0000000000592885
AUTHOR
Luca Lorenzi
Kernel estimates for nonautonomous Kolmogorov equations with potential term
Using time dependent Lyapunov functions, we prove pointwise upper bounds for the heat kernels of some nonautonomous Kolmogorov operators with possibly unbounded drift and diffusion coefficients and a possibly unbounded potential term.
Lp-uniqueness for elliptic operators with unbounded coefficients in RN
AbstractLet A be an elliptic operator with unbounded and sufficiently smooth coefficients and let μ be a (sub)-invariant measure of the operator A. In this paper we give sufficient conditions guaranteeing that the closure of the operator (A,Cc∞(RN)) generates a sub-Markovian strongly continuous semigroup of contractions in Lp(RN,μ). Applications are given in the case when A is a generalized Schrödinger operator.
A free boundary problem stemmed from combustion theory. Part II: Stability, instability and bifurcation results
AbstractWe deal with a free boundary problem, depending on a real parameter λ, in a infinite strip in R2, providing stability, instability and bifurcation.
Cores for parabolic operators with unbounded coefficients
Abstract Let A = ∑ i , j = 1 N q i j ( s , x ) D i j + ∑ i = 1 N b i ( s , x ) D i be a family of elliptic differential operators with unbounded coefficients defined in R N + 1 . In [M. Kunze, L. Lorenzi, A. Lunardi, Nonautonomous Kolmogorov parabolic equations with unbounded coefficients, Trans. Amer. Math. Soc., in press], under suitable assumptions, it has been proved that the operator G : = A − D s generates a semigroup of positive contractions ( T p ( t ) ) in L p ( R N + 1 , ν ) for every 1 ⩽ p + ∞ , where ν is an infinitesimally invariant measure of ( T p ( t ) ) . Here, under some additional conditions on the growth of the coefficients of A , which cover also some growths with an ex…