0000000000593113
AUTHOR
A Blazhev
Restoring the valence-shell stabilization in 140Nd
A projectile Coulomb-excitation experiment was performed at the radioactive-ion beam facility HIE-ISOLDE at CERN to obtain $E2$ and $M1$ transition matrix elements of $^{140}$Nd using the multistep Coulomb-excitation code GOSIA. The absolute $M1$ strengths, $\textrm{B}(M1;2^+_2→2^+_1)=0.033(8)μ^2_N,\textrm{B}(M1;2^+_3→2^+_1)=0.26^{+0.11}_{−0.10}μ^2_N$, and $\textrm{B}(M1;2^+_4→2^+_1)<0.04μ^2_{\textrm{N}}$, identify the $2^+_3$ state as the main fragment of the one-quadrupole-phonon proton-neutron mixed-symmetry state of $^{140}$Nd. The degree of F-spin mixing in $^{140}$Nd was quantified with the determination of the mixing matrix element $V_{\textrm{F−mix}}<7^{+13}_{−7}$keV.
Low-energy Coulomb excitation of Fe-62 and Mn-62 following in-beam decay of Mn-62
Collective 2(1)(+) excitations in Po-206 and Rn-208,Rn-210
In the present study, values have been measured in the 208,210Rn and 206Po nuclei through Coulomb excitation of re-accelerated radioactive beams in inverse kinematics at CERN-ISOLDE. These nuclei have been proposed to lie in, or at the boundary of the region where the seniority scheme should persist. However, contributions from collective excitations are likely to be present when moving away from the N=126 closed shell. Such an effect is confirmed by the observed increased collectivity of the transitions. Experimental results have been interpreted with the aid of theoretical studies carried out within the BCS-based QRPA framework. ispartof: European Physical Journal A, Hadrons and Nuclei vo…
New beta-decaying state in Bi-214
13 pags., 7 figs., 3 tabs.