0000000000594128

AUTHOR

Pavel Pudil

Comparative study of techniques for large-scale feature selection* *This work was suported by a SERC grant GR/E 97549. The first author was also supported by a FPI grant from the Spanish MEC, PF92 73546684

The combinatorial search problem arising in feature selection in high dimensional spaces is considered. Recently developed techniques based on the classical sequential methods and the (l, r) search called Floating search algorithms are compared against the Genetic approach to feature subset search. Both approaches have been designed with the view to give a good compromise between efficiency and effectiveness for large problems. The purpose of this paper is to investigate the applicability of these techniques to high dimensional problems of feature selection. The aim is to establish whether the properties inferred for these techniques from medium scale experiments involving up to a few tens …

research product

Advances in the statistical methodology for the selection of image descriptors for visual pattern representation and classification

Recent advances in the statistical methodology for selecting optimal subsets of features (image descriptors) for visual pattern representation and classification are presented. The paper attempts to provide a guideline about which approach to choose with respect to the a priori knowledge of the problem. Two basic approaches are reviewed and the conditions under which they should be used are specified. References to more detailed material about each one of the methods are given and experimental results supporting the main conclusions are briefly outlined.

research product